Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T15:31:53.393Z Has data issue: false hasContentIssue false

Production of amorphous metallic surfaces by means of a pulsed glow discharge electron beam

Published online by Cambridge University Press:  31 January 2011

N. Mingolo
Affiliation:
Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires, Argentina
J.J. Rocca
Affiliation:
Department of Electrical Engineering, Colorado State University, and N.S.F. Optoelectronic Computing System Center, Fort Collins, Colorado 80523
Get access

Abstract

A pulsed glow discharge electron beam has been used for the production of metallic amorphous surfaces in MgZn alloys. Electron beam pulses of 20 μs pulse width produced by a 40 A, 22.5 kV glow discharge were found to provide sufficient energy for melting the metallic surfaces; that due to the rapid cooling to the substrate yielded amorphous phases. The system allows control of the energy density, penetration, and pulse width of the heating pulse.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Laser and Electron Beam Processing of Materials, edited by White, C. W. and Peercy, P. S. (Academic Press, New York, 1980).Google Scholar
2.Ianno, N. J., Vedeyen, J. T., Can, S. S., and Steetman, B. G., Appl. Phys. Lett. 39, 622 (1981).CrossRefGoogle Scholar
3.Rocca, J. J., Meyer, J. D., Farrel, M. R., and Collins, G. J., J. Appl. Phys. 56, 790 (1984).CrossRefGoogle Scholar
4.Moore, C., Meyer, J., Fukumoto, J., Sluk, N., Thompson, L., Knapp, J., Collins, G., and Berman, S., in Silicon-on-Insulator and Buried Metals in Semiconductors, edited by Sturm, J. C., Chen, C. K., Pfeiffer, L., and Hemment, P. L. F. (Mater. Res. Soc. Symp. Proc. 107, Pittsburgh, PA, 1988), p. 207.Google Scholar
5.Allmen, M. von, in Glassy Metals II (Topics in Applied Physics), edited by Beck, H. and Giintherodt, H. J. (Springer-Verlag, Berlin, 1983), Vol. 53, p. 261.CrossRefGoogle Scholar
6.Ranea-Sandoval, H. F., Reesor, N., Szapiro, B. T., Murray, C., and Rocca, J. J., IEEE Trans, on Plasma Science PS-15, 361 (1987).CrossRefGoogle Scholar
7.Mingolo, N., Nassif, E., Arcondo, B., and Sirkin, H., J. Non-Cryst. Solids 113, 161 (1989).CrossRefGoogle Scholar
8.Nassif, E., Lamparter, P., Sperl, W., and Steeb, S., Z. Naturforsch. 38a, 142 (1983).CrossRefGoogle Scholar
9.Hansen, M., Constitution of Binary Alloys (McGraw-Hill, New York, 1958), p. 927.Google Scholar
10.Diffusion and Defect Data, edited by Wohlbier, F. H. and Fisher, D. J. (Trans. Tech. Publications, Rockport, MA, 1984), Vol. 37.Google Scholar
11.Andonov, P. and Chieux, P., J. Non-Cryst. Solids 93, 331 (1987).CrossRefGoogle Scholar
12. The Dulong and Petit high temperature heat capacity c v = 6 cal/mol K was used.Google Scholar
13.Castaing, R., Adv. Electron Phys. 13, 317 (1960).CrossRefGoogle Scholar