Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-07T18:22:56.255Z Has data issue: false hasContentIssue false

Processing effect on the luminescence and raman spectra of Gd1−xVO4:Eux3+ phosphors

Published online by Cambridge University Press:  31 January 2011

Minkee Kim
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Kwanak-ku, Seoul 151-742, South Korea
Shinhoo Kang*
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Kwanak-ku, Seoul 151-742, South Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nano-sized Eu3+-activated Gd1−xVO4 phosphors were prepared via hydrothermal reaction coupled with the coprecipitation method at a low temperature (230 °C). The coprecipitation provided chemical homogeneity. However, it resulted in a low crystallinity and reduced emission and excitation characteristics. Raman study showed that Gd–O bond lengths changed in powders, depending on the level of crystallinity. The particle morphology was controlled using ethylenediaminetetra-acetic acid during the hydrothermal reaction. Particle shapes in the nano-size range affected the vibration of atoms in the lattice, changing photoluminescence properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yu, M., Lin, J., Wang, Z., Fu, J., Wang, S., Zhang, H.J.Han, Y.C.: Fabrication, patterning, and optical properties of nanocrystalline YVO4: A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol-gel soft lithography. Chem. Mater. 14, 2224 2002Google Scholar
2Liu, B., Shi, C., Zhang, Q.Chen, Y.: Temperature dependence of GdVO4:Eu3+ luminescence. J. Alloys Compd. 333, 215 2002CrossRefGoogle Scholar
3Wang, X., Loa, I., Syassen, K., Hanfland, M.Ferrand, B.: Structural properties of the zircon- and scheelite-type phases of YVO4 at high pressure. Phys. Rev. B 70, 064109 2004Google Scholar
4Lu, G., Li, C., Wang, W., Wang, Z., Xia, H.Zhao, P.: Raman investigation of lattice vibration modes and thermal conductivity of Nd-doped zircon-type laser crystals. Mater. Sci. Eng., B 98, 156 2003CrossRefGoogle Scholar
5Dawson, P., Hargreave, M.M.Wilkinson, G.R.: The vibrational spectrum of zircon (ZrSiO4). J. Phys. C: Solid State Phys. 4, 240 1971Google Scholar
6Miller, S.A., Caspers, H.H.Rast, H.E.: Lattice vibrations of yttrium vanadate. Phys. Rev. 168, 964 1968Google Scholar
7Kaminskii, A.A., Ueda, K-i., Eichler, H.J., Kuwano, Y., Kouta, H., Bagaev, S.N., Chyba, T.H., Barnes, J.C., Gad, G.M.A., Murai, T.Lu, J.: Tetragonal vanadates YVO4 and GdVO4—New efficient χ(3)-materials for Raman lasers. Opt. Commun. 194, 201 2001Google Scholar
8Wang, A., Han, J., Guo, L., Yu, J.Zeng, P.: Database of standard Raman spectra of minerals and related inorganic crystals. Appl. Spectrosc. 48, 959 1994CrossRefGoogle Scholar
9Riwotzki, K.Haase, M.: Colloidal YVO4: Eu and YP0.95V0.05O4: Eu Nanoparticles: Luminescence and energy transfer processes. J. Phys. Chem. B 105, 12709 2001CrossRefGoogle Scholar
10Huignard, A., Buissette, V., Franville, A-C., Gacoin, T.Boilot, J-P.: Emission processes in YVO4:Eu nanoparticles. J. Phys. Chem. B 107, 6754 2003Google Scholar
11Zhang, K., Pradhan, A.K., Loutts, G.B., Roy, U.N., Cui, Y.Burger, A.: Enhanced luminescence and size effects of Y2O3:Eu3+ nanoparticles and ceramics revealed by x-rays and Raman scattering. J. Opt. Soc. Am. B 21, 1804 2004CrossRefGoogle Scholar
12Nazarov, M., Kang, J.H., Jeon, D.Y., Bukesov, S.Akmaeva, T.: Synthesis and luminescent performances of some europium activated yttrium oxide based systems. Opt. Mater. 27, 1587 2005Google Scholar
13Jia, C-J., Sun, L-D., You, L-P., Jiang, X-C., Luo, F., Pang, Y-C.Yan, C-H.: Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals. J. Phys. Chem. B 109, 3284 2005Google Scholar
14Kang, J.H., Nazarov, M., Im, W.B., Kim, J.Y.Jeon, D.Y.: Characterization of nano-size YVO4: Eu and (Y,Gd)VO4: Eu phosphors by low voltage cathodo- and photoluminescence. J. Vac. Sci. Technol., B 23(2), 843 2005Google Scholar
15Yang, H., Lee, H.Holloway, P.H.: Anisotropic growth of luminescent Eu3+- or Er3+-doped Gd2O3 nanocrystals. Nanotechnology 16, 2794 2005Google Scholar
16Liu, J., Li, K., Wangl, H., Zhu, M., Xu, H.Yan, H.: Self-assembly of hydroxyapatite nanostructures by microwave irradiation. Nanotechnology 16, 82 2005CrossRefGoogle Scholar
17Cölfen, H.Antonietti, M.: Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers. Langmuir 14, 582 1998CrossRefGoogle Scholar
18Cölfen, H.Mann, S.: Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. Engl. 42, 2350 2003Google Scholar
19JCPDS No. 17-0260. International Center for Diffraction Data, Newton Square, PA, 2000Google Scholar
20Uchida, M., Sue, A., Yoshioka, T.Okuwaki, A.: Hydrothermal synthesis of needle-like barium sulfate using a barium(II)-EDTA chelate precursor and sulfate ions. J. Mater. Sci. Lett. 19, 1373 2000Google Scholar
21Blasse, G.Grabmaier, B.C.: Luminescent Materials Springer-Verlag Berlin Heidelberg, Germany 1994 41–44Google Scholar
22Neeraj, S., Kijima, N.Cheetham, A.K.: Novel red phosphors for solid state lighting: The system BixLn1−xVO4; Eu3+/Sm3+ (Ln = Y, Gd). Solid State Commun. 131, 65 2004Google Scholar
23Anitha, M., Ramakrishnan, P., Chatterjee, A., Alexander, G.Singh, H.: Spectral properties and emission efficiencies of GdVO4 phosphors. Appl. Phys. A 74, 153 2002Google Scholar
24Shul’gin, B.V., Khodos, M.Ya., Gavrilov, F.F., Fotiev, A.A.Shalyapin, A.L.: Luminescence and energy transfer in samarium-activated yttrium, gadolinium and lanthanum orthovanadates. Z. Prikladnoi Spektroskopii 15, 854 1971Google Scholar
25Khodos, M.Ya., Shul’gin, B.V., Gavrilov, F.F., Fotiev, A.A.Lioznyanskii, V.M.: Luminescence of VO3−4 ions in rare earth orthovanadates. Z. Prikladnoi Spektroskopii. 16, 1023 1972Google Scholar
26Huignard, A., Gacoin, T.Boilot, J-P.: Synthesis and luminescence properties of colloidal YVO4. Eu. Phosphors. Chem. Mater. 12, 1090 2000Google Scholar
27Wang, Y., Zuo, Y.Gao, H.: Luminescence properties of nanocrystalline YVO4:Eu3+ under UV and VUV excitation. Mater. Res. Bull. 41, 2147 2006Google Scholar
28Hsu, C.Powell, R.C.: Energy transfer in europium doped yttrium vanadate crystals. J. Lumin. 10, 273 1975CrossRefGoogle Scholar
29Zhou, Y.H.Lin, J.: Luminescent properties of YVO4:Dy3+ phosphors prepared by spray pyrolysis. J. Alloys Compd. 408–412, 856 2006Google Scholar
30Wang, Y., Guo, X., Endo, T., Murakami, Y.Ushirozawa, M.: Identification of charge transfer (CT) transition in (Gd,Y)BO3:Eu phosphor under 100–300 nm. J. Solid State Chem. 177, 2242 2004Google Scholar
31Zhou, Y.H.Lin, J.: Morphology control and luminescence properties of YVO4:Eu phosphors prepared by spray pyrolysis. Opt. Mater. 27, 1426 2005Google Scholar
32Borchardt, H.J.: Rare-earth tungstates and 1:1 oxytungstates. J. Chem. Phys. 39, 504 1963Google Scholar
33Borchardt, H.J.: Efficiency of Eu3+ fluorescence in oxygen-dominated host lattices. J. Chem. Phys. 42, 3743 1965CrossRefGoogle Scholar
34Blasse, G.: On the Eu3+ fluorescence of mixed metal oxides. IV. The photoluminescent efficiency of Eu3+-activated oxides. J. Chem. Phys. 45, 2356 1966Google Scholar
35Yu, M., Lin, J.Wang, S.B.: Effects of x and R3+ on the luminescent properties of Eu3+ in nanocrystalline YVxP1−xO4:Eu3+ and RVO4:Eu3+ thin-film phosphors. Appl. Phys. A 80, 353 2005Google Scholar
36Yu, M., Lin, J.Fang, J.: Silica spheres coated with YVO4:Eu3+ layers via sol-gel process: A simple method to obtain spherical core-shell phosphors. Chem. Mater. 17, 1783 2005Google Scholar
37Li, G., Wang, Z., Yu, M., Quan, Z.Lin, J.: Fabrication and optical properties of core-shell structured spherical SiO2@GdVO4:Eu3+ phosphors via sol-gel process. J. Solid State Chem. 179, 2698 2006Google Scholar
38Empedocles, S.A., Neuhauser, R., Shimizu, K.Bawendi, M.G.: Photoluminescence from single semiconductor nanostructures. Adv. Mater. 11, 1243 19993.0.CO;2-2>CrossRefGoogle Scholar
39Mahalley, B.N., Dhoble, S.J., Podel, R.B.Alexander, G.: Photoluminescence in GdVO4:Bi3+, Eu3+ red phosphor. Appl. Phys. A 70, 39 2000Google Scholar
40Huignard, A., Buissette, V., Laurent, G., Gacoin, T.Boilot, J-P.: Synthesis and characterizations of YVO4:Eu colloids. Chem. Mater. 14, 2264 2002Google Scholar
41Mahalley, B.N., Pode, R.B.Gupta, P.K.: Synthesis of GdVO4: Bi, Eu red phosphor by combustion process. Phys. Status Solidi A 177, 293 19993.0.CO;2-L>CrossRefGoogle Scholar