Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T09:57:08.688Z Has data issue: false hasContentIssue false

Processing and Characterization of High-conductance Bismuth Wire Array Composites

Published online by Cambridge University Press:  31 January 2011

T. E. Huber
Affiliation:
Laser Research Laboratory, Howard University, Washington, District of Columbia 20059
M. J. Graf
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467
C. A. Foss Jr
Affiliation:
Department of Chemistry, Georgetown University, Washington, District of Columbia 20057-2222
P. Constant
Affiliation:
Laser Research Laboratory, Howard University, Washington, District of Columbia 20059
Get access

Abstract

We fabricated Bi nanowire array composites with wire diameters from 30 to 200 nm by high-pressure injection (HPI) of Bi melt into porous anodic alumina templates. The composites were dense, with Bi volume fraction in excess of 50%. The parallel Bi nanowires, whose length appeared to be limited only by the thickness of the host template (up to 55 μm), terminated at both sides of the composite in the Bi bulk. The individual Bi nanowire crystal structure was rhombohedral, with the same lattice parameters as that of bulk Bi; the wires in the array were predominantly oriented with the trigonal axis along the wire length. Low contact resistance was achieved by bonding the composite to copper electrodes.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Huber, C.A. and Huber, T.E., J. Appl. Phys. 64, 6599 (1988).Google Scholar
2.Huber, C.A., Sadoqi, M., and Huber, T.E., Adv. Mater. 7, 316 (1995).CrossRefGoogle Scholar
3.Zhang, Z., Ying, J.Y., and Dresselhaus, M.S., J. Mater. Res. 13, 1745 (1998).CrossRefGoogle Scholar
4.Zhang, Z., Sun, X., Dresselhaus, M.S., Ying, J.Y., and Heremans, M.S.J.P, Appl. Phys. Lett. 73, 1589 (1998).CrossRefGoogle Scholar
5.Gurvitch, M., J. Low. Temp. Phys. 38, 777 (1980).CrossRefGoogle Scholar
6.Glocker, D.A. and Skove, M.J., Phys. Rev. B 15, 608 (1976).CrossRefGoogle Scholar
7.Brandt, N.B., Gitsu, D.V., Nikolaeva, A.A., and Ponomarev, Y.G., Sov. Phys. JETP 45, 1226 (1977).Google Scholar
8.Nikolaeva, A.A., Bodiul, P.P., Gitsu, D.V., and Para, G. (unpublished).Google Scholar
9.Dresselhauss, M.S., Sun, X., Cronin, S.B., Koga, T., Wang, K.L., and Chen, G., in Proceedings of the 16th International Thermoelectric Society, Dresden, Germany, edited by Heinrich, A. and Schumann, J. (IEEE, Piscataway, NJ, 1997), p. 12.Google Scholar
10.Huber, T.E. and Calcao, R., in Proceedings of the 16th International Thermoelectric Society, Dresden, Germany, edited by Heinrich, A. and Schumann, J. (IEEE, Piscataway, NJ, 1997), p. 404.Google Scholar
11.Huber, T.E. and Foss, C., in Proceedings of the 17th International Thermoelectric Society, Nagoya, Japan, edited by Koumoto, K. and Yamaguchi, S. (IEEE, Piscataway, NJ, 1998), p. 244.Google Scholar
12.Bogacheck, E.N., Scherbakov, A.G., and Landman, U., in Nano-wires, edited by Serena, P.A. and Garcia, N. (Kluwer, Dordrecht, The Netherlands, 1997).Google Scholar
13.Hicks, L.D. and Dresselhaus, M.S., Phys. Rev. B 47, 16631 (1993).CrossRefGoogle Scholar
14.Liu, K., Chien, C.L., and Searson, P.C., Phys. Rev. B 58, R14681 (1998).CrossRefGoogle Scholar
15.Diggle, J.W., Downie, T.C., and Goulding, C.W., J. Electrochem. Soc. 69, 635 (1969).Google Scholar
16.Al-Rawashdeh, N.A.F, Sandrock, M.L., Sengling, C.J., and Foss, C.A. Jr, J. Phys. Chem. B102, 361 (1998);CrossRefGoogle Scholar
Hornyak, G.L., Ph.D. Dissertation, Colorado State University, 1997 (University Microfilm Services, Ann Arbor, MI, 1997).Google Scholar
17.Chacko-Davies, D., Lucas, T., and Huber, T.E. (unpublished).Google Scholar
18.Loehman, R., Ceram. Bull. 68, 891 (1989).Google Scholar
19.Adamson, A.W. in Physical Chemistry of Surfaces (John Wiley and Sons, New York, 1990), Chap. II.Google Scholar
20.Weast, R.C. in Handbook of Chemistry and Physics (CRC Press, Cleveland, OH, 1976), p. F24 and references therein.Google Scholar
21.Brandt, N.B., Gitsu, D.V., Ioisher, A.M., Kotrubenko, B.P., and Nikolaeva, A.A., Prib. Tekh. Eksp. 3, 256 (1976).Google Scholar
22.Selected Powder Diffraction Data for Metals and Alloys, compiled by the International Center for Diffraction Data, edited by S. Weissmann (JCPDS, New York, 1980).Google Scholar
23.Michenaud, J-P. and Issi, J., J. Phys. C.: Solid State Phys. 5, 3061 (1972).CrossRefGoogle Scholar
24.Chakrabarti, D.J. and Laughlin, D.E., Bull. Alloy Phase Diagrams 5, 148 (1984).CrossRefGoogle Scholar