Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T14:25:56.905Z Has data issue: false hasContentIssue false

A pretreatment process for enhanced diamond nucleation on smooth silicon substrates coated with hard carbon films

Published online by Cambridge University Press:  03 March 2011

Z. Feng
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720
K. Komvopoulos
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720
I.G. Brown
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
D.B. Bogy
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720
Get access

Abstract

Diamond nucleation on unscratched silicon substrates coated with thin films of hard carbon was investigated experimentally with a microwave plasma-assisted chemical vapor deposition system. A new pretreatment process was used to enhance the nucleation of diamond. Relatively high diamond nucleation densities of ∼108 cm−2 were achieved by pretreating the carbon-coated silicon substrates with a methane-rich hydrogen plasma at a relatively low temperature for an hour. Scanning electron microscopy and laser Raman spectroscopy studies revealed that diamond nucleation occurred from nanometer-sized spherical particles of amorphous carbon produced during the pretreatment. The nanoparticles possessed a structure different from that of the original hard carbon film, with a broad non-diamond Raman peak centered at ∼1500 cm−1, and a high etching resistance in pure hydrogen plasma. The high diamond nucleation density is attributed to the significant percentage of tetrahedrally bonded (sp3) atomic carbon configurations in the nanoparticles and the presence of sufficient high-surface free-energy sites on the pretreated surfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Rudder, R. A., Hudson, G. C., Hendry, R. C., Thomas, R. E., Posthill, J. B., and Markunas, R. J., in Applications of Diamond Films and Related Materialsa, edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., and Feldman, A. (Elsevier, Amsterdam, The Netherlands, 1991), p. 395.Google Scholar
2Pehrsson, P. E., Glesener, J., and Morrish, A., Thin Solid Films 212, 81 (1992).CrossRefGoogle Scholar
3Meilunas, R. J., Chang, R. P.H., Liu, S., and Kappes, M. M., Appl. Phys. Lett. 59, 3461 (1991).CrossRefGoogle Scholar
4Feng, Z., Brewer, M. A., Komvopoulos, K., Brown, I. G., and Bogy, D. B., J. Mater. Res. (1994, in press).Google Scholar
5Dubray, J. J., Pantano, C. G., and Yarbrough, W. A., J. Appl. Phys. 72, 3136 (1992).Google Scholar
6Feng, Z., Komvopoulos, K., Brown, I. G., and Bogy, D. B., J. Appl. Phys. 74, 2841 (1993).Google Scholar
7Hartnett, T., Miller, R., Montanari, D., Willingham, C., and Tustison, R., J. Vac. Sci. Technol. A 8, 2129 (1990).Google Scholar
8Barnes, P. N. and Wu, R. L. C., Appl. Phys. Lett. 62, 37 (1993).CrossRefGoogle Scholar
9Feng, Z., Komvopoulos, K., and Brown, I. G., (unpublished).Google Scholar
10Abrefah, J., Olander, D. R., Balooch, M., and Siekhaus, W. J., Appl. Phys. Lett. 60, 1313 (1992).CrossRefGoogle Scholar
11Anders, S., Anders, A., and Brown, I., J. Appl. Phys. 74, 4239 (1993).Google Scholar
12Brewer, M. A., Brown, I. G., Dickinson, M. R., Galvin, J. E., MacGill, R. A., and Salvadori, M. C., Rev. Sci. Instrum. 63, 3389 (1992).Google Scholar
13Nemanich, R. J., Glass, J. T., Lucovsky, G., and Shroder, R. E., J. Vac. Sci. Technol. A 6, 1783 (1988).CrossRefGoogle Scholar
14Cho, N-H., Krishnan, K. M., Veirs, D. K., Rubin, M. D., Hopper, C. B., Bhushan, B., and Bogy, D. B., J. Mater. Res. 5, 2543 (1990).Google Scholar
15Beeman, D., Silverman, J., Lynds, R., and Anderson, M. R., Phys. Rev. B 30, 870 (1984).Google Scholar
16Setaka, N., Proc. 10th Int. Conf. on Chemical Vapor Deposition, edited by Cullen, G. W. and Blocher, J. Jr. (Electrochem. Soc, Pennington, NJ, 1987), p. 1156.Google Scholar
17Liou, Y., Inspektor, A., Weimer, R., and Messier, R., Appl. Phys. Lett. 55, 631 (1989).CrossRefGoogle Scholar
18Hsu, W. L., Tung, D. M., Fuchs, E. A., McCarty, K. F., Joshi, A., and Nimmagadda, R., Appl. Phys. Lett. 55, 2739 (1989).Google Scholar
19Feng, Z., Komvopoulos, K., and Brown, I. G., (unpublished).Google Scholar