Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T11:45:25.296Z Has data issue: false hasContentIssue false

Preparation of β–SiC Nanorods with and Without Amorphous SiO2 Wrapping Layers

Published online by Cambridge University Press:  31 January 2011

G. W. Meng
Affiliation:
Institute of Solid State Physics, Chinese Academy of Science, Hefei, Anhui 230031, and Institute of Advanced Study, University of Science and Technology of China, Hefei, Anhui 230026, China
L. D. Zhang
Affiliation:
Institute of Solid State Physics, Chinese Academy of Science, Hefei, Anhui 230031, and Institute of Advanced Study, University of Science and Technology of China, Hefei, Anhui 230026, China
C. M. Mo
Affiliation:
Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
S. Y. Zhang
Affiliation:
Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
Y. Qin
Affiliation:
Institute of Solid State Physics, Chinese Academy of Science, Hefei, Anhui 230031, China
S. P. Feng
Affiliation:
Institute of Solid State Physics, Chinese Academy of Science, Hefei, Anhui 230031, China
H. J. Li
Affiliation:
Materials Science and Engineering College, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
Get access

Abstract

Preparation of β–SiC nanorods with and without amorphous SiO2 wrapping layers was achieved by carbothermal reduction of sol-gel derived silica xerogels containing carbon nanoparticles. The β–SiC nanorods with amorphous SiO2 wrapping layers were obtained by carboreduction at 1650 °C for 1.5 h, and at the end of 1.5 h the temperature was steeply raised to 1800 °C and held for 30 min; they are typically up to 20 µm in length. The diameters of the center thinner β–SiC nanorods within the amorphous SiO2 wrapping layers are in the range 10–30 nm, while the outer diameters of the corresponding amorphous SiO2 wrapping layers are between 20 and 70 nm. The β–SiC nanorods without amorphous SiO2 wrapping layers were produced by carbothermal reduction only at 1650 °C for 2.5 h, and their diameters are in agreement with those of the center thinner β–SiC nanorods wrapped in amorphous SiO2 layers. Large quantities of SiC rod nuclei and the nanometer-sized nucleus sites on carbon nanoparticles are both favorable to the formation of much thinner β–SiC nanorods. The formation of the outer amorphous SiO2 wrapping layer is from the combination reaction of decomposed SiO vapor and O2.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Iijima, S., Nature (London) 354, 56 (1991).CrossRefGoogle Scholar
2.Tenne, R., Margulis, L., Genut, M., and Hodes, G., Nature (London) 360, 444 (1992).CrossRefGoogle Scholar
3.Feldman, Y., Wasserman, E., Srolovitt, D. J., and Tenne, R., Science 267, 222 (1995).CrossRefGoogle Scholar
4.Chopra, N. G., Luyken, R. J., Cherrey, K., Crespi, V. H., Cohen, M. L., Souie, S. G., and Zettl, A., Science, 269, 966 (1995).CrossRefGoogle Scholar
5.Weng-Sieh, Z., Cherrey, K., Chopra, N. G., Blase, X., Miyamoto, Y., Rubio, A., Cohen, M. L., Louie, S. G., Zettl, A., and Gronsky, R., Phys. Rev. B 51, 11 229 (1995).CrossRefGoogle Scholar
6.Archibald, D. D. and Mann, S., Nature (London) 364, 430 (1993).CrossRefGoogle Scholar
7.Lin, H. P. and Mou, C. Y., Science 273, 765 (1996).CrossRefGoogle Scholar
8.Ghadari, M. R., Granja, J. R., and Buehler, L. K., Nature (London) 369, 301 (1994).CrossRefGoogle Scholar
9.Li, G. and McGown, L. B., Science 264, 249 (1994).CrossRefGoogle Scholar
10.Dai, H., Wong, E. W., Lu, Y. Z., Fan, S. S., and Lieber, C. M., Nature (London) 375, 769 (1995).CrossRefGoogle Scholar
11.Han, W. Q., Fan, S. S., Li, Q. Q., Gu, B. L., and Yu, D. P., Chem. Phys. Lett. 265, 374 (1997).CrossRefGoogle Scholar
12.Yang, P. D. and Lieber, C. M., Science 273, 1836 (1996).CrossRefGoogle Scholar
13.Xu, X. L., Yu, D. P., Feng, S.Q., Duan, X. F., and Zhang, Z., NanoStructured Materials 8(3), 373 (1997).CrossRefGoogle Scholar
14.Han, W. Q., Fan, S. S., Li, Q. Q., and Hu, Y. D., Science 277, 1287 (1997).CrossRefGoogle Scholar
15.Han, W. Q., Fan, S. S., Li, Q. Q., Gu, B. L., Zhang, X. B., and Yu, D. P., Appl. Phys. Lett. 71(16), 2271 (1997).CrossRefGoogle Scholar
16.Ono, T., Saitoh, H., and Esashi, M., Appl. Phys. Lett. 70(14), 1852 (1997).CrossRefGoogle Scholar
17.Wong, E. W., Sheehan, P. E., and Lieber, C. M., Science 277, 1971 (1997).CrossRefGoogle Scholar
18.Fissel, A., Schroter, B., and Richter, W., Appl. Phys. Lett. 66 (23), 3182 (1995).CrossRefGoogle Scholar
19.Bootsma, G. A., Knippenbegr, W. F., and Verspui, G., J. Cryst. Growth 11, 297 (1971).CrossRefGoogle Scholar
20.Krishinarao, R. V., Godokhindi, M. M., Mukunda, P. G. Iyengar, and Chakraborty, M., J. Am. Ceram. Soc. 74, 2869 (1991).CrossRefGoogle Scholar
21.Chrysanthou, A., Grieveson, P., and Jha, A., J. Mater. Sci. 26, 3463 (1991).CrossRefGoogle Scholar
22.Choi, H. J. and Lee, J. G., J. Mater. Sci. 30, 1982 (1995).CrossRefGoogle Scholar
23.Addamiano, A., J. Cryst. Growth 58, 617 (1982).CrossRefGoogle Scholar
24.Kirchner, H. P. and Knoll, P., J. Am. Ceram. Soc. 46, 299 (1963).CrossRefGoogle Scholar
25.Setaka, N. and Ajiri, K., J. Am. Ceram. Soc. 55, 540 (1972).CrossRefGoogle Scholar
26.Ryan, C. E., Berman, I., Marshall, R. C., Considine, D. P., and Hawley, J. J., J. Cryst. Growth 1, 255 (1967).CrossRefGoogle Scholar
27.Wanger, R. S. and Ellis, W. C., Appl. Phys. Lett. 4, 39 (1964).Google Scholar
28.Milewski, J. V., Gac, F. D., Petrovic, J. J., and Skaggs, S. R., J. Mater. Sci. 20, 1160 (1985).CrossRefGoogle Scholar
29.Zhou, D. and Seraphin, S., Chem. Phys. Lett. 222, 233 (1994).CrossRefGoogle Scholar
30.Julre, A., Larbot, A., Guizard, C., and Cot, L., Mater. Res. Bull. 25, 601 (1990).Google Scholar
31.Tadahiro, M., Shimio, S., Takashi, O., Tetushi, N., and Tohru, S., J. Mater. Sci. 27, 1567 (1992).Google Scholar
32.McMahon, G., Carpenter, G. J. C., and Malis, T. F., J. Mater. Sci. 26, 5655 (1991).CrossRefGoogle Scholar
33.Pickard, S. M. and Derby, B., J. Mater. Sci. 26, 6207 (1991).CrossRefGoogle Scholar
34.Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y., Zhao, R. A., and Wang, G., Science 274, 1701 (1996).CrossRefGoogle Scholar
35.Comer, J. J., Mater. Res. Bull. 4, 279 (1969).CrossRefGoogle Scholar
36.Wei, G. C. T., J. Am. Ceram. Soc. 62, C-111 (1983).Google Scholar