Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T05:11:44.813Z Has data issue: false hasContentIssue false

Preparation of Epitaxial BaTiO3 Thin Films by the Dipping-pyrolysis Process

Published online by Cambridge University Press:  31 January 2011

S. Kim
Affiliation:
Department of Chemical Engineering, Yosu Fisheries University, Yosu 550–749, Korea
T. Manabe
Affiliation:
National Institute of Materials and Chemical Research, Tsukuba, Ibaraki 305, Japan
I. Yamaguchi
Affiliation:
National Institute of Materials and Chemical Research, Tsukuba, Ibaraki 305, Japan
T. Kumagai
Affiliation:
National Institute of Materials and Chemical Research, Tsukuba, Ibaraki 305, Japan
S. Mizuta
Affiliation:
National Institute of Materials and Chemical Research, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

Epitaxial BaTiO3 thin films were prepared on SrTiO3 (100) substrates by the dipping-pyrolysis process using metal naphthenates as starting materials. Highly oriented BaTiO3 thin films were crystallized by heat treatment at 800 °C and higher, from amorphous precursor films pyrolyzed at 470 °C. XRD pole-figure and reciprocal-space mapping analyses showed that the films were epitaxially grown on SrTiO3substrates and were pseudocubic phase with an a║/aτ ratio of 1.003, smaller than the c0/a0 ratio (=1.011) of bulk tetragonal BaTiO3.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wills, L. A., Wessels, B. W., Richeson, D. S., and Marks, T. J., Appl. Phys. Lett. 60, 41 (1992).Google Scholar
2.Nashimoto, K., Fork, D. K., and Geballe, T. H., Appl. Phys. Lett. 60, 1199 (1992).Google Scholar
3.Terauchi, H., Watanabe, Y., Kasatani, H., Kamigaki, K., Yano, Y., Terashima, T., and Bando, Y., J. Phys. Soc. Jpn. 61, 2194 (1992).Google Scholar
4.Gong, J., Kawasaki, M., Fujito, K., Tanaka, U., Ishizawa, N., Yoshimoto, M., Koinuma, H., Kumagai, M., Hirai, K., and Horiguchi, K., Jpn. J. Appl. Phys. 32, L687 (1993).Google Scholar
5.Benomar, W. O., Xue, S. S., Lessard, R. A., Singh, A., Wu, Z. L., and Kuo, P. K., J. Mater. Res. 9, 970 (1994).Google Scholar
6.Shi, E., Cho, C. R., Jang, M. S., Jeong, S. Y., and Kim, H. J., J. Mater. Res. 9, 2914 (1994).Google Scholar
7.Matsuoka, M., Hoshino, K., and Ono, K., J. Appl. Phys. 76, 1768 (1994).Google Scholar
8.Kim, T. W. and Yom, S. S., Appl. Phys. Lett. 65, 1955 (1994).Google Scholar
9.Nose, T., Kim, H-T., and Uwe, H., Jpn. J. Appl. Phys. 33, 5259 (1994).Google Scholar
10.Srikant, V., Tarsa, E. J., Clarke, D. R., and Speck, J. S., J. Appl. Phys. 77, 1517 (1995).Google Scholar
11.Kim, S., Hishita, S., Kang, Y. M., and Baik, S., J. Appl. Phys. 78, 5604 (1996).Google Scholar
12.Kaiser, D. L., Vaudin, M. D., Lotter, L. D., Wang, Z. L., Cline, J. P., Hwang, C. S., Marinenko, R. B., and Gillen, J. G., Appl. Phys. Lett. 66, 2801 (1995).Google Scholar
13.Burhanuddin, Z. A., Tomar, M. S., and Dayalan, E., Thin Solid Films 253, 53 (1994).Google Scholar
14.Peng, C-J. and Krupanidhi, S. B., J. Mater. Res. 10, 708 (1995).Google Scholar
15.Hwang, C. S., Park, S. O., Cho, H-J., Kang, C. S., Kang, H-K., Lee, S. I., and Lee, M. Y., Appl. Phys. Lett. 67, 2819 (1995).Google Scholar
16.Chen, Y-F., Sun, L., Yu, T., Chen, J-X., Zhu, Y-Y., Ming, N-B., Chen, X-Y., and Liu, Z-G., Thin Solid Films 269, 18 (1995).Google Scholar
17.Seifert, A., Lange, F. F., and Speck, J. S., J. Mater. Res. 10, 680 (1995).Google Scholar
18.Masuda, A., Yamanaka, Y., Tazoe, M., Nakamura, T., Morimoto, A., and Shimizu, T., J. Cryst. Growth 158, 84 (1996).Google Scholar
19.Kim, S., Manabe, T., Yamaguchi, I., Kumagai, T., and Mizuta, S., in Proc. 1996 MRS-J Symposium (in press).Google Scholar
20.Touloukian, Y. S., Thermophysical Properties of Matter (IFI/Plenum, New York, 1977), Vol. 13, pp. 554 and 570.Google Scholar