Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T15:11:28.042Z Has data issue: false hasContentIssue false

Preparation of Cu-doped γ-Fe2O3 nanowires with high coercivity by chemical vapor deposition

Published online by Cambridge University Press:  28 June 2011

Shao-Min Zhou*
Affiliation:
Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, People’s Republic of China
Shi-Yun Lou
Affiliation:
Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, People’s Republic of China
Yong-Qiang Wang
Affiliation:
Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, People’s Republic of China
Xi-Liang Chen
Affiliation:
Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, People’s Republic of China
Li-Sheng Liu
Affiliation:
Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, People’s Republic of China
Hong-Lei Yuan
Affiliation:
Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Iron oxides, including maghemite (γ-Fe2O3) and magnetite (Fe3O4), have been widely applied in many fields. For technological advances in the future, further improvements of their ferromagnetic properties are desirable. The development of iron ferrites with a large coercive field (Hc) is one of issues of consequence. For ferrites, however, enlarging the Hc value is not easy because of their low magnetocrystalling anisotropy constant. Here we report single-crystalline Cu-doped γ-Fe2O3 nanowires in which the controlled diameter (70–100 nm) and the graded Cu dopant (7, 10, and 15%) are directly obtained by a simple chemical vapor deposition technique. In particular, the coercive value (over 2 T) of 10% Cu-doped γ-Fe2O3 nanowires is much higher than that (<80 Oe) of undoped γ-Fe2O3 nanowires at room temperature. On the basis of the experimental magnetization data, the achievement of such a higher coercive field of Cu-doped γ-Fe2O3 (10%) nanowires is tentatively suggested.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ishii, O. and Sencia, M.: High coercivity and high wear-resistance gamma-Fe2O3 thin-films. J. Appl. Phys. 77, 5828 (1995).CrossRefGoogle Scholar
2.Jin, J., Hashimoto, K., and Ohkoshi, S.: Formation of spherical and rod-shaped epsilon-Fe2O3 nanocrystals with a large coercive field. J. Mater. Chem. 15, 1067 (2005).CrossRefGoogle Scholar
3.Jin, J., Ohkoshi, S., and Hashimoto, K.: Giant coercive field of nanometer-sized iron oxide. Adv. Mater. 16, 48 (2004).CrossRefGoogle Scholar
4.Lu, N., Song, X., and Zhang, J.: Crystal structure and magnetic properties of ultrafine nanocrystalline SmCo3 compound. Nanotechnology 21, 115708 (2010).CrossRefGoogle ScholarPubMed
5.Kronmuller, H.: Recent developments in high-tech magnetic materials. J. Magn. Magn. Mater. 140144, 25 (1995).CrossRefGoogle Scholar
6.Dutta, P., Manivannan, A., Seehra, M., Shah, N., and Huffman, G.: Magnetic properties of nearly defect-free maghemite nanocrystals. Phys. Rev. B 70, 174428 (2004).CrossRefGoogle Scholar
7.Kusigerski, V., Tadic, M., Spasojevic, V., Antic, B., Markovic, D., Boskovic, S., and Matovic, B.: High coercivity of gamma-Fe2O3 nanoparticles obtained by a mechanochemically activated solid-state displacement reaction. Scr. Mater. 56, 883 (2007).CrossRefGoogle Scholar
8.Morales, M., Veintemillas-Verdaguer, S., and Serna, C.: Magnetic properties of uniform gamma-Fe2O3 nanoparticles smaller than 5 nm prepared by laser pyrolysis. J. Mater. Res. 14, 3066 (1999).CrossRefGoogle Scholar
9.Li, L., Ding, J., and Xue, J.: A facile green approach for synthesizing monodisperse magnetite nanoparticles. J. Mater. Res. 25, 810 (2010).CrossRefGoogle Scholar
10.Chicot, D., Roudet, F., Lepingle, V., and Louis, G.: Strain gradient plasticity to study hardness behavior of magnetite (Fe3O4) under multicyclic indentation. J. Mater. Res. 24, 749 (2009).CrossRefGoogle Scholar
11.Tronc, E., Chaneac, C., and Jolivet, J.P.: Structural and magnetic characterization of ε-Fe2O3. J. Solid State Chem. 139, 93 (1998).CrossRefGoogle Scholar
12.Tseng, Y., Souza-Neto, N., Haskel, D., Gich, M., Frontera, C., Roig, A., Veenendaal, M., and Nogues, J.: Nonzero orbital moment in high coercivity ε-Fe2O3 and low-temperature collapse of the magnetocrystalline anisotropy. Phys. Rev. B 79, 094404 (2009).CrossRefGoogle Scholar
13.Ding, Y., Morber, J., Snyder, R., and Wang, Z.: Nanowire structural evolution from Fe3O4 to ε-Fe2O3. Adv. Funct. Mater. 17, 1172 (2007).CrossRefGoogle Scholar
14.Sakurai, S., Namai, A., Hashimoto, K., and Ohkoshi, S.: First observation of phase transformation of all four Fe2O3 phases (γ → ε → β → α-Phase). J. Am. Chem. Soc. 131, 18299 (2009).CrossRefGoogle ScholarPubMed
15.Lai, J., Shafi, K.V., Loos, K., Ulman, A., Lee, Y., Vogt, T., and Estournes, C.: Doping gamma-Fe2O3 nanoparticles with Mn(III) suppresses the transition to the alpha-Fe2O3 structure. J. Am. Chem. Soc. 125, 11470 (2003).CrossRefGoogle Scholar
16.Chakrabarti, S., Mandal, S., and Chaudhuri, S.: Cobalt doped γ-Fe2O3 nanoparticles: Synthesis and magnetic properties. Nanotechnology 16, 506 (2005).CrossRefGoogle Scholar
17.Bensaoula, A., Chu, C., Hor, P., Ignatiev, A., Liu, J., Meng, R., Mesarwi, A., Richardson, J., Ting, C., Wang, Y., and Wolfe, J.: A study on Hc-enhancement in co-modified γ-Fe2O3. J. Magn. Magn. Mater. 5457, 1697 (1986).CrossRefGoogle Scholar
18.Helgason, O., Greneche, J., Berry, F., Morup, S., and Mosselmans, F.: Tin- and titanium-doped gamma-Fe2O3 (maghemite). J. Phys. Cond. Mater. 13, 10785 (2001).CrossRefGoogle Scholar
19.Deng, M., Chin, T., and Chen, F.: Fine structure and magnetic properties of Mn- and Co-doped nanocrystalline γ-Fe2O3. J. Appl. Phys. 75, 5888 (1994).CrossRefGoogle Scholar
20.Zhu, Y. and Li, C.: Materials science communication effect of doped silicon on structure and magnetic properties of γ-Fe2O3 particles. Mater. Chem. Phys. 51, 169 (1997).CrossRefGoogle Scholar
21.Tripathy, D., Adeyeye, A., Boothroyd, C., and Shannigrahi, S.: Microstructure and magnetotransport properties of Cu-doped Fe3O4 films. J. Appl. Phys. 103, 07F701 (2008).CrossRefGoogle Scholar
22.Yao, Q., Liu, W., Zhao, X.G., and Zhang, Z.: Structure and magnetic properties of Cu-doped SmCo6.7−xCuxCr0.3 magnets. J. Appl. Phys. 102, 093905 (2007).CrossRefGoogle Scholar
23.Li, W., Ohkubo, T., Akiya, T., Kato, H., and Hono, K.: The role of Cu addition in the coercivity enhancement of sintered Nd-Fe-B permanent magnets. J. Mater. Res. 24, 413 (2009).CrossRefGoogle Scholar
24.Hussein, A., Murugaraj, P., Rix, C., and Mainwaring, D.: The influence of Sb doping in achieving high magnetic coercivities in CoPt nanoparticles for micromagnet applications. J. Mater. Res. 24, 499 (2009).CrossRefGoogle Scholar
25.Yoshikawa, N., Cao, Z., Louzguin, D., Xie, G., and Taniguchi, S.: Micro/nanostructure observation of microwave-heated Fe3O4. J. Mater. Res. 24, 1741 (2009).CrossRefGoogle Scholar
26.Zhu, A., Luo, X., and Dai, S.: Chitosan-poly (acrylic acid) complex modified paramagnetic Fe3O4 nanoparticles for camptothecin loading and release. J. Mater. Res. 24, 2307 (2009).CrossRefGoogle Scholar
27.Ianos, R.: An efficient solution for the single-step synthesis of 4CaO·Al2O3·Fe2O3 powders. J. Mater. Res. 24, 245 (2009).CrossRefGoogle Scholar
28.Zhou, S., Zhang, X., Gong, H., Zhang, B., Wu, Z., Du, Z., and Wu, S.: Magnetic enhancement of pure gamma Fe2O3 nanochains by chemical vapor deposition. J. Phys. Cond. Mater. 20, 075217 (2008).CrossRefGoogle Scholar