Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T18:52:38.326Z Has data issue: false hasContentIssue false

Preparation and Luminescence Properties of Neodymium(III) Oxide Nanocrystals Dispersed in Sol-gel Titania/ (γ-glycidoxypropyl)Trimethoxysilane Composite Thin Films

Published online by Cambridge University Press:  31 January 2011

Wenxiu Que*
Affiliation:
School of Materials Engineering, Nanyang Technological University, Singapore 639798
X. Hu
Affiliation:
School of Materials Engineering, Nanyang Technological University, Singapore 639798
L. H. Gan
Affiliation:
School of Science, Nanyang Technological University, Singapore 259735
G. Roshan Deen
Affiliation:
School of Science, Nanyang Technological University, Singapore 259735
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Neodymium(III) oxide nanocrystals prepared by an inverse microemulsion technique have been dispersed in sol-gel titania/(γ-glycidoxypropyl)trimethoxysilane composite thin films at low temperature. Transmission electron microscopy and x-ray diffraction were used to characterize the phosphor nanoparticles and show that the neodymium(III) oxide nanoparticles have a nanocrystal structure and the size of the nanoparticles is in the range from 5 to 60 nm. An intense up-conversion emission in violet (399 nm) color from neodymium(III) oxide nanocrystals upon excitation with a yellow light (577 nm) has been observed. Two ultraviolet emissions at 347 and 372 nm and a blue emission at 466 nm have also been observed, and those are assigned to electronic transitions appropriately. A relatively strong room-temperature photoluminescence emission at 1064 nm corresponding to the 4F3/24I11/12 transition of neodymium ion has been measured as a function of the heat treatment temperature. In addition to this emission, two other emissions at 890 and 1336 nm have also been observed. Especially, a clear shoulder peak at 1145 nm, which could probably be resulting from the host matrix, was observed in all measured samples, and this shoulder peak reached a maximum intensity after a heat treatment at 300 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Efros, Al.L. and Efros, A.L., Sov. Phys. Semicond. 16, 772 (1982).Google Scholar
2.Brus, L.E., J. Chem. Phys. 80, 4403 (1984).CrossRefGoogle Scholar
3., Hasselbarth, Eychmuller, A., and Weller, H., Chem. Phys. Lett. 203, 271 (1993).CrossRefGoogle Scholar
4.Henglein, A., Kumar, A., Janata, E., and Weller, H., Chem. Phys. Lett. 132, 133 (1986).CrossRefGoogle Scholar
5.Wang, Y., Acc. Chem. Res. 24, 133 (1991).CrossRefGoogle Scholar
6.Spanhel, L., Hnase, M., Weller, H., and Henglein, A., J. Am. Chem. Soc. 109, 5649 (1987).CrossRefGoogle Scholar
7.Colvin, V.L., Schlamp, M.C., and Alivisatos, A.P., Nature 370, 354 (1994).CrossRefGoogle Scholar
8.Bhargava, R.N., Gallagher, D., Hong, X., and Nurmikko, A., Phys. Rev. Lett. 72, 416 (1994).CrossRefGoogle Scholar
9.Brus, L.E., IEEE J. Quantum Electron. 22, 1909 (1986).CrossRefGoogle Scholar
10.Bhargava, R.N., Gallagher, D., and Welker, T., J. Lumin . 60, 61, 275 (1994).CrossRefGoogle Scholar
11.Oliveirade, S., Araujo, M.T., and Neto, A.S. Goveia, J. Appl. Phys. 83, 604 (1998).Google Scholar
12., Kermaoui, Barthou, C., Denis, J.P., and Blanzat, B., J. Lumin. 29, 295 (1984).CrossRefGoogle Scholar
13.Berthou, H. and Jorgensen, C.K., Opt. Lett. 15, 1100 (1990).Google Scholar
14.Wang, J., Reekie, L., Brocklesby, W.S., Chow, Y.T., and Payne, D.N., J. Non. Cryst. Solids 180, 201 (1995).Google Scholar
15.Layne, B., Lowdermilk, W.H., and Weber, M.J., Phys. Rev. B 16, 10 (1997).CrossRefGoogle Scholar
16.Benatsou, M. and Bouazaoui, M., Opt. Commun, 137, 14 (1997).CrossRefGoogle Scholar
17.Naftaly, M. and Jha, A., J. Appl. Phys. 87, 2098 (2000).Google Scholar
18.Zhang, X., Lahoz, F., Serrano, C., Lacoste, G., and Daran, E., IEEE J. Quantum Electron. 36, 243 (2000).CrossRefGoogle Scholar
19.Zhang, Q.J., Wang, P., Sun, X.F., Zhai, Y., Dai, P., Yang, B., Hai, M., and Xie, J.P., Appl. Phys. Lett. 72, 407 (1998).Google Scholar
20.Gerhardt, R., Kleine-Bo¨rger, J., Beilschmidt, L., Frommeyer, M., Do¨tsch, H., and Gather, B., Appl. Phys Lett. 75, 1210 (1999).Google Scholar
21.Wang, J., Reckie, L., Brocklesby, W.S., Chow, Y.T., and Payne, D.N., J. Non-cryst. Solids 180, 207 (1995).Google Scholar
22.Saisudha, M.B., Rao, K.S.R. Koteswara, Bhat, H.L., and Ramakrishna, J., J. Appl. Phys. 80, 4845 (1996).CrossRefGoogle Scholar
23.Nagli, L., German, A., and Katzir, A., J. Appl. Phys. 85, 2114 (1999).CrossRefGoogle Scholar
24.Kawamura, Y., Wada, Y., Hasegawa, Y., Iwamuro, M., Kitamura, T., and Yanagida, S., Appl. Phys. Lett. 74, 3245 (1999).Google Scholar
25.Schmidt, H. and Wolter, H., J. Non-Cryst. Solids 121, 428 (1990).Google Scholar
26.Motakef, S., Boulton, J.M., and Uhlmann, D.R., Opt. Lett. 19, 1125 (1994).CrossRefGoogle Scholar
27.Shamrakov, D. and Reisfeld, R., Chem. Phys. Lett. 213, 47 (1993).Google Scholar
28.Sorek, Y., Reisfeld, R., and Tenne, R., Chem. Phys. Lett. 227, 242 (1994).CrossRefGoogle Scholar
29.Sorek, Y., Zevin, M., and Reisfeld, R., Chem. Mater. 9, 670 (1997).CrossRefGoogle Scholar
30.Digonnet, M.J.F., Rare Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993), pp. 5080.Google Scholar