Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T23:35:16.123Z Has data issue: false hasContentIssue false

Preparation and characterization of zinc-doped gallophosphate molecular sieve

Published online by Cambridge University Press:  31 January 2011

Masatoshi Yoshino
Affiliation:
Department of Environmental Chemistry and Materials, Faculty of Environmental Science and Technology, Okayama University, Tsushima-Naka, Okayama 700–8530, Japan
Motohide Matsuda
Affiliation:
Department of Environmental Chemistry and Materials, Faculty of Environmental Science and Technology, Okayama University, Tsushima-Naka, Okayama 700–8530, Japan
Michihiro Miyake
Affiliation:
Department of Environmental Chemistry and Materials, Faculty of Environmental Science and Technology, Okayama University, Tsushima-Naka, Okayama 700–8530, Japan
Get access

Abstract

The effect of Zn doping on crystallization of gallophosphate molecular sieve, cloverite, synthesized hydrothermally at 170 °C, using starting gels with ZnO, was investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), and molecular dynamics (MD) simulation, etc. The SEM observations and crystallinities estimated from XRD data revealed that Zn-doped cloverite with very good crystallinity was successfully prepared, and the addition of ZnO to the starting gel was effective in promoting the crystallization process in a short reaction time. The results of chemical analyses, estimated unit cell dimensions, and MD simulations suggested the substitution of Zn atoms for Ga atoms in the framework of Zn-doped cloverite.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Estermann, M., McCusker, L.B., Baerlocher, C., Merrouche, A., and Kessler, H., Nature 320, 352 (1991).Google Scholar
2.Richardson, J.W. Jr., Pluth, J.J., and Smith, J.V., Naturwissenschaften 76, 467 (1989).CrossRefGoogle Scholar
3.Merrouche, A., Patarin, J., Kessler, H., Souland, M., Delmotte, L., Guth, J.L., and Joly, J.F., Zeolites 12, 226 (1992).CrossRefGoogle Scholar
4.Bedard, R.L., Bowes, C.L., Coombs, N., Holmes, A.J., Jiang, T., , Kirkby, Macdonald, P.M., Malek, A.M., Ozin, G.A., Petrov, S., , Plavac, Ramik, R.A., Steele, M.R., and Young, D., J. Am. Chem. Soc. 115, 2300 (1993).CrossRefGoogle Scholar
5.Zibrowius, B., Anderson, M.W., Schmidt, W., Schu¨th, F-F., Aliev, A.E., and Harris, K.D.M., Zeolites 13, 607 (1993).CrossRefGoogle Scholar
6.Altenschildensche, H., Muhr, H.J., and Nesper, R., Microporous Mater. 1, 257 (1993).CrossRefGoogle Scholar
7.Barr, T.L., Klinowski, J., He, H., Alberti, K., Mu¨ller, G., and Lercher, J.A., Nature 365, 429 (1993).CrossRefGoogle Scholar
8.Bandyopadhyay, S. and Yashonath, S., J. Solid State Chem. 111, 151 (1994).CrossRefGoogle Scholar
9.Schott-Darie, C., Delmotte, L., Kessler, H., Benazzi, E., Solid State Nucl. Magn. Resonance 3, 43 (1994).CrossRefGoogle ScholarPubMed
10.Mu¨ller, G., Eder-Mirth, G., Kessler, H., Lercher, J.A., J. Phys. Chem. 99, 12327 (1995).CrossRefGoogle Scholar
11.Zubowa, H-L., Schreier, E., Jancke, K., Steinike, U., and Fricke, R., Collect. Czech. Chem. Commun. 60, 403 (1995).CrossRefGoogle Scholar
12.Mu¨ller, G., Eder-Mirth, G., Lercher, J.A., in Zeolites: A Refined Tool for Designing Catalytic Sites, edited by Bonneviot, L. and Kaliaguine, S. (Elsevier, Amsterdam, The Netherlands, 1995), pp. 7177.CrossRefGoogle Scholar
13.Janin, A., Lavalley, J.C., Benazzi, E., Schott-Darie, C., and Kessler, H., in Catalysis by Microporous Materials, Studies in Surface Science and Catalysis, Vol. 94, edited by Beyer, H.K., Karge, H.G., Kiricsi, J., and Nagy, J.B. (Elsevier, Amsterdam, The Netherlands, 1995), pp. 124130.Google Scholar
14.Richter, M., Zubowa, H-L., Eckelt, R., and Fricke, R., Microporous Mater. 7, 119 (1996).CrossRefGoogle Scholar
15.Schmidt, W., Schu¨th, F., and Kallus, S., in Progress in Zeolite and Microporous Materials, Studies in Surface Science and Catalysis, Vol. 105, edited by Chon, H., Ihm, S-K., and Uh, Y.S. (Elsevier, Amsterdam, The Netherlands, 1997), pp. 771778.Google Scholar
16.Fricke, R., Richter, M., Zubowa, H-L., and Schreier, E., in Progress in Zeolite and Microporous Materials, Studies in Surface Science and Catalysis, Vol. 105, edited by Chon, H., Ihm, S-K., and Uh, Y.S. (Elsevier, Amsterdam, The Netherlands, 1997), pp. 655662.Google Scholar
17.Richter, M., Fischer, H., Bartoszek, M., Zubowa, H-L., and Fricke, R., Microporous Mater. 8, 69 (1997).CrossRefGoogle Scholar
18.Park, M. and Komarneni, S., Microporous Mesoporous Mater. 20, 39 (1998).CrossRefGoogle Scholar
19.Zubowa, H-L., Kosslick, H., Carius, H-E., Frunza, S., Frunza, L., Landmesser, H., Richter, M., Schreier, E., Steinike, U., and Fricke, R., Microporous Mesoporous Mater. 21, 467 (1998).CrossRefGoogle Scholar
20.Adachi, M., Corker, J., Kessler, H., Mallmann, A. de, Lefebvre, F., and Basset, J.M., Microporous Mesoporous Mater. 28, 155 (1999).CrossRefGoogle Scholar
21.Shannon, R.D., Acta Crystallogr. A32, 751 (1976).CrossRefGoogle Scholar
22.Vonk, C.G., J. Appl. Crystallogr. 6, 148 (1973).CrossRefGoogle Scholar
23.International Table for X-ray Crystallography (Kynoch Press, Birmingham, U.K., 1974), Vol. IV, pp. 91–101, and 148150.Google Scholar
24.International Table for X-ray Crystallography (Kynoch Press, Birmingham, U.K., 1968), Vol. III, pp. 250251.Google Scholar