Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-07T19:02:16.813Z Has data issue: false hasContentIssue false

Preparation and characterization of mesoporous ceria–zirconia–alumina nanocomposite with high hydrothermal stability

Published online by Cambridge University Press:  31 January 2011

Md. Hasan Zahir*
Affiliation:
Japan Fine Ceramics Center, Hybrid Process Group, Nagoya 456-8587, Japan
Yumi H. Ikuhara
Affiliation:
Japan Fine Ceramics Center, Hybrid Process Group, Nagoya 456-8587, Japan
Shinji Fujisaki
Affiliation:
Japan Fine Ceramics Center, Hybrid Process Group, Nagoya 456-8587, Japan
Koji Sato
Affiliation:
Japan Fine Ceramics Center, Hybrid Process Group, Nagoya 456-8587, Japan
Takayuki Nagano
Affiliation:
Japan Fine Ceramics Center, Hybrid Process Group, Nagoya 456-8587, Japan
Yuji Iwamoto
Affiliation:
Japan Fine Ceramics Center, Hybrid Process Group, Nagoya 456-8587, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

CeO2–ZrO2–γ-Al2O3 mixed oxides with different molar compositions have been synthesized by the sol-gel method using nitrate–alkoxide precursors. Some relationships between the molar composition of the ternary systems and their textural and structural properties are presented. CeO2–ZrO2–γ-Al2O3 mixed oxides have been studied and characterized using x-ray diffraction, transmission electron microscopy, and Raman spectroscopic analyses. By complete porosity analyses of all samples before and after hydrothermal (up to 75% steam) treatment at 500 °C, we have been able to optimize a highly hydrothermally stable CeO2–ZrO2–γ-Al2O3 system with a molar ratio of 10:10:80 mol%. γ-Al2O3 alone and CeO2-doped as well as ZrO2-doped γ-Al2O3 were also investigated by the hydrothermal treatment, and their steam-sensitive properties have been compared with those of the ternary CeO2–ZrO2–γ-Al2O3 system.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Di Monte, R.Kašpar, J.: Heterogeneous environmental catalysis—a gentle art: CeO2–ZrO2 mixed oxides as a case history. Catal. Today 100, 27 2005CrossRefGoogle Scholar
2Steele, B.C.H.: Fuel-cell technology, running on natural gas. Nature 400, 619 1999CrossRefGoogle Scholar
3Crepaldi, E.L., Soler-Illia, G.J.A.A., Bouchara, A., Grosso, D., Durand, D.Sanchez, C.: Controlled formation of highly ordered cubic and hexagonal mesoporous nanocrystalline yttria– zirconia and ceria–zirconia thin films exhibiting high thermal stability. Angew. Chem. Int. Ed. Engl. 42, 347 2003CrossRefGoogle ScholarPubMed
4De Vos, R.M.Verweij, H.: High-selectivity, high-flux silica membranes for gas separation. Science 279, 1710 1998CrossRefGoogle Scholar
5Kikuchi, E.: Membrane reactor application to hydrogen production. Catal. Today 56, 97 2000CrossRefGoogle Scholar
6Mamontov, E., Brezny, R., Koranne, M.Egami, T.: Nanoscale heterogeneities and oxygen storage capacity of Ce0.5Zr0.5O2. J. Phys. Chem. B 107, 13007 2003CrossRefGoogle Scholar
7Nagai, Y., Yamamoto, T., Tanaka, T., Yoshida, S., Nonaka, T., Okamoto, T., Suda, A.Sugiura, M.: X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr = 1). Catal. Today 74, 225 2002CrossRefGoogle Scholar
8Di Monte, R., Fornasiero, P., Desinan, S., Kašpar, J., Gatica, J.M., Calvino, J.J.Fonda, E.: Thermal stabilization of CexZr1−xO2 oxygen storage promoters by addition of Al2O3: Effect of thermal aging on textural, structural, and morphological properties. Chem. Mater. 16, 4273 2004CrossRefGoogle Scholar
9García, M.F., Arias, A.M., Juez, A.I., Belver, C., Hungría, A.B., Conesa, J.C.Soria, J.: Structural characteristics and redox behavior of CeO2–ZrO2/Al2O3 supports. J. Catal. 194, 385 2000CrossRefGoogle Scholar
10Kozlov, A.I., Kim, D.H., Yezerets, A., Andersen, P., Kung, H.H.Kung, M.C.: Effect of preparation method and redox treatment on the reducibility and structure of supported ceria–zirconia mixed oxide. J. Catal. 209, 417 2002CrossRefGoogle Scholar
11Shen, W., Dong, X., Zhu, Y., Chen, H.Shi, J.: Mesoporous CeO2 and CuO-loaded mesoporous CeO2 synthesis, characterization, and CO catalytic oxidation property. Micropor. Mesopor. Mater. 85, 157 2005CrossRefGoogle Scholar
12Yao, M.H., Baird, R.J., Kunz, F.W.Hoost, T.E.: An XRD and TEM investigation of the structure of alumina-supported ceria–zirconia. J. Catal. 166, 67 1997CrossRefGoogle Scholar
13Di Monte, R., Fornasiero, P., Kašpar, J., Rumori, P., Gubitosa, G.Graziani, M.: Pd/Ce0.6Zr0.4O2/Al2O3 as advanced materials for three-way catalysts: Part 1. Catalyst characterization, thermal stability and catalytic activity in the reduction of NO by CO. Appl. Catal. B 24, 157 2000CrossRefGoogle Scholar
14Kašpar, J.Fornasiero, P.: Nanostructured materials for advanced automotive de-pollution catalysts. J. Solid State Chem. 171, 19 2003CrossRefGoogle Scholar
15Kumar, K.P., Tranto, J., Nair, B.N., Kumar, J., Hoj, J.W.Engell, J.E.: Effect of sintering atmosphere on the pore-structure stability of cerium-doped nanostructured alumina. Mater. Res. Bull. 29, 551 1994CrossRefGoogle Scholar
16Scherrer, P.: Bestimmung der grösse und der inneren struktur von kolloidteilchen mittels röntgenstrahlen. Nachr. Ges. Wiss. Göttingen. 2, 98 1918Google Scholar
17Lin, Y.S., Chang, C.H.Gopalan, R.: Improvement of thermal stability of porous nanostructured ceramic membranes. Ind. Eng. Chem. Res. 33, 860 1994CrossRefGoogle Scholar
18Colon, G., Pijolat, M., Valdivieso, F., Vidal, H., Kašpar, J., Finocchio, E., Daturi, M., Binet, C., Lavalley, J.C., Baker, R.T.Bernal, S.: Surface and structural characterization of CexZr1−xO2 CEZIRENCAT mixed oxides as potential three-way catalyst promoters. J. Chem. Soc., Faraday Trans. 94, 3717 1998CrossRefGoogle Scholar
19Suda, A., Yamamura, K., Sobukawa, H., Ukyo, Y., Tanabe, T., Nagai, Y., Dong, F.Sugiura, M.: Effect of the amount of Pt loading on the oxygen storage capacity of ceria-zirconia solid solution. J. Ceram. Soc. Jpn. 112, 623 2004CrossRefGoogle Scholar
20Yashima, M., Arashi, H., Kakihana, M.Yoshimura, M.: Raman scattering study of cubic-tetragonal phase transition in Zr1−xCexO2 solid solution. J. Am. Ceram. Soc. 77, 1067 1994CrossRefGoogle Scholar
21Zahir, Md.H., Sato, K., Mori, H., Iwamoto, Y., Nomura, M.Nakao, S.: Preparation and properties of hydrothermally stable γ-alumina-based composite mesoporous membranes. J. Am. Ceram. Soc. 89, 2874 2006CrossRefGoogle Scholar
22Gregg, S.J.Sing, K.S.W.: Adsorption, Surface Area and Porosity Academic Press London 1991Google Scholar
23Barrett, E.P., Joyner, L.G.Halenda, P.H.: The determination of pore volume and area distributions in porous substances, computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 1951CrossRefGoogle Scholar
24Zahir, Md.H., Sato, K.Iwamoto, Y.: Development of hydrothermally stable sol-gel derived La2O3-doped Ga2O3–Al2O3 composite mesoporous membrane. J. Membr. Sci. 247, 95 2005CrossRefGoogle Scholar
25Gallaher, G.R.Liu, P.K.T.: Characterization of ceramic membranes 1. Thermal and hydrothermal stabilities of commercial 40 Å membranes. J. Membr. Sci. 92, 29 1994CrossRefGoogle Scholar
26Cuif, J., Blanchard, G., Touret, O., Seigneurin, A., Marczi, M.Quémeré, E.: (Ce,Zr)O2 solid solutions for three-way catalysts. SAE Tech. Pap. Ser. 970463, 1 1997Google Scholar