Published online by Cambridge University Press: 11 November 2019
Silver/titanium dioxide (Ag/TiO2) membranes were successfully deposited on poly(sulfone amide) substrates by direct current magnetron sputtering and radio frequency magnetron sputtering techniques with pure silver (Ag) and TiO2 targets. The prepared membranes were systematically characterized by scanning electron microscopy X-ray diffraction, insulation tests, and Fourier transform infrared spectrometry. The dependence of the main sputtering parameters on optical and thermal properties of the film was investigated by an orthogonal analysis method. Optimal parameters of fabricate Ag/TiO2 membranes with better comprehensive performances could be obtained ultimately. The infrared reflection rate and temperature difference of the Ag/TiO2 film deposited with the optimized parameters were 81.6% and 90 °C, respectively. The high infrared reflection and excellent thermal conductivity properties of the Ag/TiO2 composite membrane make it a promising candidate for thermal insulating coatings on fabrics, and can be used for the development of high-performance protective garments in the future.