Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T05:20:03.550Z Has data issue: false hasContentIssue false

Powder x-ray diffraction of turbostratically stacked layer systems

Published online by Cambridge University Press:  31 January 2011

D. Yang
Affiliation:
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
R. F. Frindt
Affiliation:
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Get access

Abstract

A special form of the Debye formula for calculating the powder x-ray diffraction of a turbostratically stacked layer system is derived, and calculated diffraction patterns for turbostratically stacked graphite and MoS2 layers are presented. Single-molecular-layer MoS2, prepared by exfoliation of lithium-intercalated MoS2 in water or alcohols, has been deposited on various supports, and x-ray diffraction patterns show that the restacking of the MoS2 layers can be perfectly turbostratic. The restacked MoS2 may or may not have water or organic bilayers between them, depending on the deposition conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Warren, B. E., Phys. Rev. 59, 693 (1941).CrossRefGoogle Scholar
2.Shi, H., Reimers, J. M., and Dahn, J. R., J. Appl. Crystallogr. 26, 827 (1993);CrossRefGoogle Scholar
Drits, V.A. and Tchoubar, C., X-Ray Diffraction by Disordered Lamellar Structures (Springer-Verlag, Berlin, 1991).Google Scholar
3.Brindly, B. W., X-Ray Identification and Crystal Structure of Clay Minerals, edited by Brown, G. (Mineralogical Society, London, 1961), p. 446.Google Scholar
4.Schöllhorn, R. and Weiss, A., J. Less-Comm. Met. 36, 229 (1974).CrossRefGoogle Scholar
5.Gee, M.A., Frindt, R.F., Joensen, P., and Morrison, S.R., Mater. Res. Bull. 21, 541 (1986).CrossRefGoogle Scholar
6.Bissessur, R., Schindler, J. L., Kannewurf, C. R., and Kanatzidis, M., Mol. Cryst. Liq. Cryst. 254, 249 (1994).CrossRefGoogle Scholar
7.Tagaya, H., Hashimoto, T., Karasu, M., Izumi, T., and Chiba, T., Chem. Lett., 2113 (1991).CrossRefGoogle Scholar
8.Divigalpitiya, W. M. R., Frindt, R. F., and Morrison, S. R., Science 246, 389 (1989).CrossRefGoogle Scholar
9.Warren, B. E. and Bodenstein, P., Acta Crystallogr. 18, 282 (1965).CrossRefGoogle Scholar
10.Reynolds, R. C., in Modern Powder Diffraction, Reviews in Mineralogy (Mineralogical Society of America, 1989), Vol. 20, Chap. 6, pp. 145182.CrossRefGoogle Scholar
11.Liang, K. S., Chianelli, R. R., Chien, F. Z., and Moss, S. C., J. Non-Cryst. Solids 79, 251 (1986).CrossRefGoogle Scholar
12.Guinier, A., X-ray Diffraction (Freeman, San Francisco, 1963).Google Scholar
13.Hall, R. D. and Monot, R., Computing in Physics, 414 (1991).CrossRefGoogle Scholar
14.Yang, D., Sandoval, S. J., Divigalpitiya, W. M. R., Irwin, J. C., and Frindt, R. F., Phys. Rev. B 43, 12053 (1991).Google Scholar
15.Yang, D., Ph.D. Thesis, Simon Fraser University (1993).Google Scholar
16.Joensen, P., Frindt, R. F., and Morrison, S. R., Mater. Res. Bull. 21, 457 (1986).CrossRefGoogle Scholar
17.Pauling, L., The Nature of the Chemical Bond (Cornell University Press, Cornell, NY, 1960).Google Scholar