Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T10:10:30.297Z Has data issue: false hasContentIssue false

Potential oscillations during the electrochemical self-assembly of copper/cuprous oxide layered nanostructures

Published online by Cambridge University Press:  31 January 2011

Jay A. Switzer
Affiliation:
Department of Chemistry and Graduate Center for Materials Research, University of Missouri, Rolla, Rolla, Missouri 65409–1170
Chen-Jen Hung
Affiliation:
Department of Chemistry and Graduate Center for Materials Research, University of Missouri, Rolla, Rolla, Missouri 65409–1170
Ling-Yuang Huang
Affiliation:
Department of Chemistry and Graduate Center for Materials Research, University of Missouri, Rolla, Rolla, Missouri 65409–1170
F. Scott Miller
Affiliation:
Department of Chemistry and Graduate Center for Materials Research, University of Missouri, Rolla, Rolla, Missouri 65409–1170
Yanchun Zhou
Affiliation:
Department of Chemistry and Graduate Center for Materials Research, University of Missouri, Rolla, Rolla, Missouri 65409–1170
Eric R. Raub
Affiliation:
Department of Chemistry and Graduate Center for Materials Research, University of Missouri, Rolla, Rolla, Missouri 65409–1170
Mark G. Shumsky
Affiliation:
Department of Chemistry and Graduate Center for Materials Research, University of Missouri, Rolla, Rolla, Missouri 65409–1170
Eric W. Bohannan
Affiliation:
Department of Chemistry and Graduate Center for Materials Research, University of Missouri, Rolla, Rolla, Missouri 65409–1170
Get access

Abstract

Layered nanostructures of copper metal and cuprous oxide are electrodeposited from alkaline solutions of Cu(II) lactate at room temperature. No subsequent heat treatment is necessary to effect crystallization. The electrode potential spontaneously oscillates during constant-current deposition. At a fixed current density the oscillation period decreases as either the pH or temperature is increased. The oscillations are periodic in stirred solution, but show period doubling and evidence of quasi-periodic or chaotic behavior in unstirred solution. The phase composition and resistivity of the films can be controlled by varying the applied current density. The resistivity of the films can be varied over ten orders of magnitude. Scanning electron microscopy shows that the films are layered.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Switzer, J. A., Am. Ceram. Soc. Bull. 66, 1521 (1987).Google Scholar
2.Coyle, R. T. and Switzer, J. A., “Electrochemical Synthesis of Ceramic Films and Powders,” U.S. Patent No. 4,882,014, issued November, 1989.Google Scholar
3.Switzer, J. A., J. Electrochem. Soc. 133, 722 (1986).CrossRefGoogle Scholar
4.Phillips, R. J., Shane, M. J., and Switzer, J. A., J. Mater. Res. 4, 923 (1989).CrossRefGoogle Scholar
5.Phillips, R. J., Golden, T. D., Shumsky, M. G., and Switzer, J. A., J. Electrochem. Soc. 141, 2391 (1994).CrossRefGoogle Scholar
6.Breyfogle, B. E., Phillips, R. J., and Switzer, J. A., Chem. Mater. 4, 1356 (1992).CrossRefGoogle Scholar
7.Breyfogle, B. E., Shumsky, M. G., Hung, C-J., and Switzer, J. A., J. Electrochem. Soc. 143, 2741 (1996).CrossRefGoogle Scholar
8.Golden, T. D., Shumsky, M. G., Zhou, Y., VanderWerf, R. A., Van Leeuwen, R. A., and Switzer, J. A., Chem. Mater. 8, 2499 (1996).CrossRefGoogle Scholar
9.Switzer, J. A., Shane, M. J., and Phillips, R. J., Science 247, 444 (1990).CrossRefGoogle Scholar
10.Switzer, J. A. and Golden, T. D., Adv. Mater. 5, 474 (1993).CrossRefGoogle Scholar
11.Switzer, J. A., Raffaelle, R. P., Phillips, R. J., Hung, C-J., and Golden, T. D., Science 258, 1918 (1992).CrossRefGoogle Scholar
12.Golden, T. D., Raffaelle, R. P., and Switzer, J. A., Appl. Phys. Lett. 63, 1501 (1993).CrossRefGoogle Scholar
13.Switzer, J. A., Phillips, R. J., and Golden, T. D., Appl. Phys. Lett. 66, 819 (1995).CrossRefGoogle Scholar
14.Switzer, J. A., Hung, C-J., Breyfogle, B. E., Shumsky, M. G., Van Leeuwen, R., and Golden, T. D., Science 264, 1573 (1994).CrossRefGoogle Scholar
15.Phillips, R. J., Golden, T. D., Shumsky, M. G., Bohannan, E. W., and Switzer, J. A., Chem. Mater. 9, 1670 (1997).CrossRefGoogle Scholar
16.Matsumoto, Y., Fujisue, M., and Hombo, J., J. Electroanal. Chem. 314, 323 (1991).CrossRefGoogle Scholar
17.Zhou, Y., Phillips, R. J., and Switzer, J. A., J. Am. Ceram. Soc. 78, 981 (1995).CrossRefGoogle Scholar
18.Switzer, J. A. and Phillips, R. J., in Better Ceramics Through Chemistry III, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 111.Google Scholar
19.Mitchell, P. J. and D.Wilcox, G., Nature (London) 357, 395 (1992).CrossRefGoogle Scholar
20.Redepenning, J. and McIsaac, J. P., Chem. Mater. 2, 625 (1990).CrossRefGoogle Scholar
21.Matsumoto, Y., Adachi, H., and Hombo, J., J. Am. Ceram. Soc. 76, 769 (1993).CrossRefGoogle Scholar
22.Switzer, J. A., Hung, C-J., Bohannan, E. W., Shumsky, M. G., Golden, T. D., and Van Aken, D. C., Adv. Mater. 9, 334 (1997).CrossRefGoogle Scholar
23.Agekyan, V. T., Phys. Status Solidi A 43, 11 (1977).CrossRefGoogle Scholar
24.Grondahl, L. O., Science 64, 306 (1926).CrossRefGoogle Scholar
25.Kittel, C., Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986), Chap. 11.Google Scholar
26.Lin, J. L. and Wolfe, J. P., Phys. Rev. Lett. 71, 1222 (1993).CrossRefGoogle Scholar
27.Mysyrowicz, A., Benson, E., and Fortin, E., Phys. Rev. Lett. 77, 896 (1996).CrossRefGoogle Scholar
28.Snoke, D., Science 273, 1351 (1996).CrossRefGoogle Scholar
29.Young, R. A., in The Rietveld Method edited by Young, R. A. (Oxford University Press, Oxford, 1995), Chap. 1.Google Scholar
30.Buttry, D. A. and Ward, M. D., Chem. Rev. 92, 1355 (1992).CrossRefGoogle Scholar
31.Ikemiya, N., Kubo, T., and Hara, S., Surf. Sci. 323, 81 (1995).CrossRefGoogle Scholar