Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T03:12:35.921Z Has data issue: false hasContentIssue false

Polyimide degradation induced by irradiation with N+ ions

Published online by Cambridge University Press:  31 January 2011

V. Švorčík
Affiliation:
Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague, Czech Republic
I. Miček
Affiliation:
Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague, Czech Republic
V. Rybka
Affiliation:
Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague, Czech Republic
V. Hnatowicz
Affiliation:
Institute of Nuclear Physics, Czech Academy of Science, 250 68 Řež, Czech Republic
F. Černý
Affiliation:
Department of Physics, Czech Technical University, 166 07 Prague, Czech Republic
Get access

Abstract

The samples of Upilex R polyimide (PI) were irradiated with 90 keV N+ ions to the fluences from 5 × 1014 to 2 × 1017 cm−2, and sheet resistance (Rs) and thermoelectric power (TEP) were measured in dependence on the ion fluence and the sample temperature. The Rs achieves its minimum for the ion fluence of 1 × 1017 cm−2, and from the measured temperature dependence of Rs it may be concluded that the ion beam modified PI exhibits semiconductor properties with charge transport governed by the variable range hopping mechanism. The measured TEP of the PI samples irradiated to the fluences above 1 × 1016 cm−2 is low (the order of μV/K). Such properties are typical for metals, and the conclusion is that the charge transport in the irradiated PI samples is contributed by the mechanisms which are characteristic for both semiconductors and metals. The role of conjugated double bonds was examined by measuring absorption UV-VIS spectra. The number of the conjugated double bonds correlates with observed Rs, and the width of the forbidden band, determined from UV-VIS spectra, is a decreasing function of the ion fluence.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dresselhaus, M. S., Wassermann, B., and Wnek, G. E., in Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G. K., Holland, O. W., Clayton, C. R., and White, C. W. (Mater. Res. Soc. Symp. Proc. 27, Pittsburgh, PA, 1984), p. 413.Google Scholar
2.Švorčík, V., Rybka, V., Hnatowicz, V., and Kvítek, J., Mater. Lett. 19, 329 (1994).CrossRefGoogle Scholar
3.Davenas, J. and Xu, X. L., Nucl. Instrum. Methods B71, 33 (1992).CrossRefGoogle Scholar
4.Xu, D., Xu, X. L., and Zou, S. C., Mater. Lett. 12, 12 (1991).Google Scholar
5.Trigaud, T., Moliton, J. P., Jussiaux, C., and Maziere, B., Nucl. Instrum. Methods B107, 323 (1996).Google Scholar
6.Loh, I. H., Oliver, R. W., and Sioshansi, P., Nucl. Instrum. Methods B34, 337 (1988).CrossRefGoogle Scholar
7.Chapiro, A., Nucl. Instrum. Methods B32, 11 (1988).Google Scholar
8.Švorčík, V., Rybka, V., Endršt, R., Hnatowicz, V., and Kvítek, J., J. Appl. Polymer. Sci. 49, 1939 (1993).CrossRefGoogle Scholar
9.Hnatowicz, V., Havránek, V., Peřina, V., Švorčík, V., and Rybka, V., Nucl. Instrum. Methods 80/81, 1059 (1993).CrossRefGoogle Scholar
10.Fink, D., Mueller, M., Chaderton, L. T., Elliman, R. G., and McDonald, D. C., Nucl. Instrum. Methods B32, 125 (1998).Google Scholar
11.Calcagno, L., Compagnini, G., and Foti, G., Nucl. Instrum. Methods B65, 413 (1992).Google Scholar
12.Švorčík, V., Endršt, R., Rybka, V., Arenholz, E., Hnatowicz, V., and Černý, F., Eur. Polym. J. 31, 189 (1995).CrossRefGoogle Scholar
13.Xu, D., Xu, X. L., Du, G. D., Wang, R., Zou, S. C., and Liu, X. H., Nucl. Instrum. Methods B80/81, 1063 (1993).CrossRefGoogle Scholar
14.Iwaki, M., Yabe, K., Fukuda, A., Watanabe, H., Itoh, A., and Takeda, M., Nucl. Instrum. Methods B80/81, 1080 (1993).CrossRefGoogle Scholar
15.Lee, E. H., Lewis, M. B., Blau, P. J., and Mansur, L. K., J. Mater. Res. 6, 610 (1991).CrossRefGoogle Scholar
16.Švorčík, V., Rybka, V., Stibor, I., and Hnatowicz, V., J. Electrochem. Soc. 142, 590 (1995).CrossRefGoogle Scholar
17.Švorčík, V., Rybka, V., Hnatowicz, V., Miček, I., Jankovskij, O., Ochsner, R., and Ryssel, H., J. Appl. Polym. Sci. (1997, in press).Google Scholar
18.Švorčík, V., Rybka, V., Jankovskij, O., Hnatowicz, V., and Kvítek, J., J. Mater. Res. 9, 643 (1994).CrossRefGoogle Scholar
19.Kaiser, A. B., Phys. Rev. 40, 2806 (1989).CrossRefGoogle Scholar
20.Moliton, A., Moreau, Ch., Moliton, J. P., and Frozer, G., Nucl. Instrum. Methods B80/81, 1028 (1993).CrossRefGoogle Scholar
21.Mott, N., Metal Insulator Transition (Taylor & Francis, London, 1990).CrossRefGoogle Scholar
22.Moliton, A., Lucas, B., Moreau, C., Friend, R. H., and Francois, B., Philos. Mag. B69, 1155 (1994).Google Scholar
23.Russel, H. and Ruge, I., Ion Implantation (Wiley, New York, 1986).Google Scholar
24.Kuczkowski, A. and Liwo, J., Synth. Metals 18, 575 (1987).CrossRefGoogle Scholar
25.Moreau, C., Ratier, B., Moliton, A., and Francois, B., Rad. Eff. Def. Sol. 137, 129 (1995).CrossRefGoogle Scholar
26.Isotalo, H. and Stubb, H., Synth. Metals 28, C 305 (1989).Google Scholar
27.Ranby, B. and Rabek, J. F., Photodegradation, Photooxidation and Photostailization of Polymers (Wiley, London, 1975).Google Scholar
28.Tauc, J., Amorphous and Liquid Semiconductors (Plenum, London, 1974), p. 175.CrossRefGoogle Scholar
29.Davenas, J., Massardier, V., and Hoang, T. V., Nucl. Instrum. Methods B83, 189 (1993).CrossRefGoogle Scholar