Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-30T21:17:08.408Z Has data issue: false hasContentIssue false

Polyanion modulated evolution of perovskite BiFeO3 microspheres to microcubes by a microwave assisted hydrothermal method

Published online by Cambridge University Press:  24 May 2013

Zhi Wang
Affiliation:
Department of Electronic Engineering, Key Laboratory of Polarized Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China
Wenfei Xu
Affiliation:
Department of Electronic Engineering, Key Laboratory of Polarized Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China
Hui Peng*
Affiliation:
Department of Electronic Engineering, Key Laboratory of Polarized Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China
Xiaodong Tang*
Affiliation:
Department of Electronic Engineering, Key Laboratory of Polarized Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

In this work, the morphology of BiFeO3 was successfully modulated from microsphere to microcube by using a polyanion, poly (methyl vinyl ether-alt-maleic acid) (PMVEMA), in a microwave assisted hydrothermal route. A simple ultrasonic purification method has been developed to obtain pure phase BiFeO3 from the crude products without using any chemicals. X-ray diffraction results confirmed the capability of this purification method. When increasing the amount of PMVEMA, the morphology of BiFeO3 gradually changed from microsphere to microcube as illustrated by scanning electron microscopy. A mechanism was suggested for the morphology evolution of BiFeO3. After the formation of the small BiFeO3 single crystal, PMVEMA preferentially absorbed on one side of the crystals through specific and/or noncovalent interactions, resulting in the preferential integration of these crystals to form microcubes. The magnetic properties of these microcrystals were also investigated and the magnetization of the microcubes increased with the decrease of temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dagotto, E.: PHYSICS. When oxides meet face to face. Science 318(5853), 1076 (2007).CrossRefGoogle ScholarPubMed
Wu, S.M., Cybart, S.A., Yu, P., Rossell, M.D., Zhang, J.X., Ramesh, R., and Dynes, R.C.: Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9(9), 756 (2010).CrossRefGoogle Scholar
Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38(8), R123 (2005).CrossRefGoogle Scholar
Spaldin, N.A. and Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309(5733), 391 (2005).CrossRefGoogle ScholarPubMed
Eerenstein, W., Mathur, N.D., and Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442(7104), 759 (2006).CrossRefGoogle ScholarPubMed
Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M. and Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613), 1719 (2003).CrossRefGoogle ScholarPubMed
Smolenskii, G.A. and Chupis, I.: Sov. Phys. Usp. 25, 475 (1982).CrossRefGoogle Scholar
Palai, R., Katiyar, R.S., Schmid, H., Tissot, P., Clark, S.J., Robertson, J., Redfern, S.A.T., Catalan, G. and Scott, J.F.: β phase and γ-β metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B 77(1), 014110 (2008).CrossRefGoogle Scholar
Lin, Y-H., Jiang, Q., Wang, Y., Nan, C-W., Chen, L., and Yu, J.: Enhancement of ferromagnetic properties in BiFeO3 polycrystalline ceramic by La doping. Appl. Phys. Lett. 90(17), 172507 (2007).CrossRefGoogle Scholar
Leontsev, S.O. and Eitel, R.E.: Origin and magnitude of the large piezoelectric response in the lead-free (1–x)BiFeO3–xBaTiO3 solid solution. J. Mater. Res. 26(01), 9 (2011).CrossRefGoogle Scholar
Yang, M.: Fern-shaped bismuth dendrites electrodeposited at hydrogen evolution potentials. J. Mater. Chem. 21(9), 3119 (2011).CrossRefGoogle Scholar
Tang, J. and Alivisatos, A.P.: Crystal splitting in the growth of Bi2S3. Nano Lett. 6(12), 2701 (2006).CrossRefGoogle ScholarPubMed
Zhang, X.Y., Lai, C.W., Zhao, X., Wang, D.Y., and Dai, J.Y.: Synthesis and ferroelectric properties of multiferroic BiFeO3 nanotube arrays. Appl. Phys. Lett. 87(14), 143102 (2005).CrossRefGoogle Scholar
Park, T.J., Papaefthymiou, G.C., Viescas, A.J., Moodenbaugh, A.R., and Wong, S.S.: Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7(3), 766 (2007).CrossRefGoogle ScholarPubMed
Selbach, S.M., Tybell, T., Einarsrud, M.A., and Grande, T.: Size-dependent properties of multiferroic BiFeO3 nanoparticles. Chem. Mater. 19(26), 6478 (2007).CrossRefGoogle Scholar
Chen, C., Cheng, J., Yu, S., Che, L., and Meng, Z.: Hydrothermal synthesis of perovskite bismuth ferrite crystallites. J. Cryst. Growth 291(1), 135 (2006).CrossRefGoogle Scholar
Mi, J.L., Jensen, T.N., Christensen, M., Tyrsted, C., Jorgensen, J.E., and Iversen, B.B.: High-temperature and high-pressure aqueous solution formation, growth, crystal structure, and magnetic properties of BiFeO3 nanocrystals. Chem. Mater. 23(5), 1158 (2011).CrossRefGoogle Scholar
Li, S., Lin, Y.H., Zhang, B.P., Wang, Y., and Nan, C.W.: Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors. J. Phys. Chem. C 114(7), 2903 (2010).CrossRefGoogle Scholar
Fei, L., Yuan, J., Hu, Y., Wu, C., Wang, J., and Wang, Y.: Visible light responsive perovskite BiFeO3 pills and rods with dominant {111}c facets. Cryst. Growth Des. 11(4), 1049 (2011).CrossRefGoogle Scholar
Joshi, U.A., Jang, J.S., Borse, P.H., and Lee, J.S.: Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Appl. Phys. Lett. 92(24), 242106 (2008).CrossRefGoogle Scholar
Zhu, X., Hang, Q., Xing, Z., Yang, Y., Zhu, J., Liu, Z., Ming, N., Zhou, P., Song, Y., Li, Z., Yu, T. and Zou, Z.: Microwave hydrothermal synthesis, structural characterization, and visible-light photocatalytic activities of single-crystalline bismuth ferric nanocrystals. J. Am. Ceram. Soc. 94(8), 2688 (2011).CrossRefGoogle Scholar
Ruan, Q.J. and Zhang, W.D.: Tunable morphology of Bi2Fe4O9 crystals for photocatalytic oxidation. J. Phys. Chem. C 113(10), 4168 (2009).CrossRefGoogle Scholar
Zhang, X., Lv, J., Bourgeois, L., Cui, J., Wu, Y., Wang, H., and Webley, P.A.: Formation and photocatalytic properties of bismuth ferrite submicrocrystals with tunable morphologies. New J. Chem. 35(4), 937 (2011).CrossRefGoogle Scholar
Bernardo, M.S., Jardiel, T., Peiteado, M., Caballero, A.C., and Villegas, M.: Reaction pathways in the solid state synthesis of multiferroic BiFeO3. J. Eur. Ceram. Soc. 31(16), 3047 (2011).CrossRefGoogle Scholar
Wang, Z., Zhu, J., Xu, W., Sui, J., Peng, H., and Tang, X.: Microwave hydrothermal synthesis of perovskite BiFeO3 nanoparticles: An insight into the phase purity during the microwave heating process. Mater. Chem. Phys. 135(2–3), 330 (2012).CrossRefGoogle Scholar
Chen, X-Z., Qiu, Z-C., Zhou, J-P., Zhu, G., Bian, X-B., and Liu, P.: Large-scale growth and shape evolution of bismuth ferrite particles with a hydrothermal method. Mater. Chem. Phys. 126(3), 560 (2011).CrossRefGoogle Scholar
Chen, J., Xing, X.R., Watson, A., Wang, W., Yu, R.B., Deng, J.X., Yan, L., Sun, C., and Chen, X.B.: Rapid synthesis of multiferroic BiFeO3 single-crystalline nanostructures. Chem. Mater. 19(15), 3598 (2007).CrossRefGoogle Scholar
Cao, G., Choi, H., Konishi, H., Kou, S., Lakes, R., and Li, X.: Mg–6Zn/1.5%SiC nanocomposites fabricated by ultrasonic cavitation-based solidification processing. J. Mater. Sci. 43(16), 5521 (2008).CrossRefGoogle Scholar
Gonzalez-Avila, S.R., Prabowo, F., Kumar, A., and Ohl, C-D.: Improved ultrasonic cleaning of membranes with tandem frequency excitation. J. Membr. Sci. 415416(0), 776 (2012).CrossRefGoogle Scholar
Ashokkumar, F.G.M.: Ultrasound assisted chemical processes. Rev. Chem. Eng. 15, 41 (1999).CrossRefGoogle Scholar
Suslick, K.S., Choe, S-B., Cichowlas, A.A., and Grinstaff, M.W.: Sonochemical synthesis of amorphous iron. Nature 353(6343), 414 (1991).CrossRefGoogle Scholar
J.C.O.P.D. Standards: Powder Diffraction File (PDF) (International Centre for Diffraction Data, Newtown Square, DE, 2004).Google Scholar
Wang, Y., Xu, G., Yang, L., Ren, Z., Wei, X., Weng, W., Du, P., Shen, G., and Han, G.: Alkali metal ions-assisted controllable synthesis of bismuth ferrites by a hydrothermal method. J. Am. Ceram. Soc. 90(11), 3673 (2007).CrossRefGoogle Scholar
Tsai, C-J., Yang, C-Y., Liao, Y-C., and Chueh, Y-L.: Hydrothermally grown bismuth ferrites: controllable phases and morphologies in a mixed KOH/NaOH mineralizer. J. Mater. Chem. 22(34), 17432 (2012).CrossRefGoogle Scholar
Busch, D.H. and Bailar, J.C.: The stereochemistry of complex inorganic compounds. Xvii. The stereochemistry of hexadentate ethylenediaminetetraacetic acid complexes. J. Am. Chem. Soc. 75(18), 4574 (1953).CrossRefGoogle Scholar
Nakanishi, K.: Infrared Absorption Spectroscopy (Holden Day, San Francisco, CA, 1977).Google Scholar
Rao, G.V.S., Rao, C.N.R., and Ferraro, J.R.: Infrared and electronic spectra of rare earth perovskites: Ortho-chromites, -manganites and -ferrites. Appl. Spectrosc. 24(4), 436 (1970).CrossRefGoogle Scholar
Kaczmarek, W. and Graja, A.: Lattice dynamics study of the solid solution (Bi1−xLax) FeO3 by i.r. spectroscopy. Solid State Commun. 17(7), 851 (1975).CrossRefGoogle Scholar
Lebeugle, D., Colson, D., Forget, A., Viret, M., Bonville, P., Marucco, J.F., and Fusil, S.: Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys. Rev. B 76(2), 024116 (2007).CrossRefGoogle Scholar
Jaiswal, A., Das, R., Vivekanand, K., Abraham, P.M., Adyanthaya, S., and Poddar, P.: Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals. J. Phys. Chem. C 114(5), 2108 (2010).CrossRefGoogle Scholar
Gao, F., Yuan, Y., Wang, K.F., Chen, X.Y., Chen, F., and Liu, J.M.: Preparation and photoabsorption characterization of BiFeO3 nanowires. Appl. Phys. Lett. 89(10), 102506 (2006).CrossRefGoogle Scholar