Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T03:28:56.767Z Has data issue: false hasContentIssue false

Polarization of plastic deformation modes in polysynthetically twinned TiAl crystals

Published online by Cambridge University Press:  31 January 2011

V. Paidar
Affiliation:
Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Praha 8, Czech Republic
K. Kishida
Affiliation:
Materials Engineering Laboratory, National Institute for Materials Science, 1–2-1 Sengen, Tsukuba, Ibaraki 305–0047, Japan
M. Yamaguchi
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606–8501, Japan
Get access

Abstract

Polarization of deformation twinning (its propagation in a certain sense but not in the opposite one) is taken for granted. However, the same phenomenon can occur for a superdislocation glide as well, as is demonstrated in this paper. The consequences for plastic deformation of polysynthetically twinned TiAl crystals with the lamellar interfaces parallel to the loading direction are discussed. It is not the interface itself that is an obstacle for propagating deformation but also the fact that a deformation mode with the parallel Burgers vector cannot be activated in the neighboring lamella due to the directionality of superdislocation motion leading to additional stress increase.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yamaguchi, M., Inui, H., and Ito, K., Acta Mater. 48, 307 (2000).CrossRefGoogle Scholar
2.Inui, H., Matsumuro, M., Wu, D.H., and Yamaguchi, M., Philos. Mag. A 75, 395 (1997).CrossRefGoogle Scholar
3.Kishida, K., Inui, H., and Yamaguchi, M., Philos. Mag. A 78, 1 (1998).CrossRefGoogle Scholar
4.Livingston, J.D. and Chalmers, B., Acta Metall. 5, 322 (1957).CrossRefGoogle Scholar
5.Shen, Z., Wagoner, R.H., and Clark, W.A.T., Acta Metall. Mater. 36, 3231 (1988).CrossRefGoogle Scholar
6.Lee, T.C., Robertson, I.M., and Birnbaum, H.K., Scr. Metall. 23, 799 (1989).CrossRefGoogle Scholar
7.Luster, J. and Morris, M.A., Metall. Mater. Trans. A 26, 1745 (1995).CrossRefGoogle Scholar
8.Suri, S., Viswanathan, G.B., Neeraj, T., Hou, D.H., and Mills, M.J., Acta Mater. 47, 1019 (1999).CrossRefGoogle Scholar
9.Zghal, S., Coujou, A., and Couret, A., Philos. Mag. A 81, 345 (2001).CrossRefGoogle Scholar
10.Zghal, S. and Couret, A., Philos. Mag. A 81, 365 (2001).CrossRefGoogle Scholar
11.Paidar, V., Pal-Val, P.P., Kadecková, S., Acta Metall. 34, 2277 (1986).CrossRefGoogle Scholar
12.Hook, R.E. and Hirth, J.P., Acta Metall. 15, 535 (1967).CrossRefGoogle Scholar
13.Rey, C. and Zaoui, Acta Metall. 30, 523 (1982).CrossRefGoogle Scholar
14.Sittner, P. and Paidar, V., Acta Metall. 37, 1717 (1989).CrossRefGoogle Scholar
15.Paidar, V., Gemperlová, J., and Pal-Val, P.P., Mater. Sci. Eng. A 137, 69 (1991).CrossRefGoogle Scholar
16.Paidar, V., J. Phys. IV 11, 269 (2001).Google Scholar
17.Hug, G., Loiseau, A., and Lasalmonie, A., Philos. Mag. A 54, 47 (1986).CrossRefGoogle Scholar
18.Yamaguchi, M. and Inui, H., in Ordered Intermetallics-Physical Metallurgy and Mechanical Behaviour, edited by Liu, C.T., Cahn, R.W., and Sauthoff, G. (Kluwer, Dordrecht, The Netherlands, 1992), p. 217.CrossRefGoogle Scholar
19.Appel, F. and Wagner, R., Mater. Sci. Eng. R 22, 187 (1998).CrossRefGoogle Scholar
20.Paidar, V. and Vitek, V., in Intermetalic Compounds: Progress, edited by Westbrook, J.H., Fleischer, R.L. (John Wiley, Chichester, U.K., 2002), Vol. 3, p. 437.Google Scholar
21.Fu, C.L. and Yoo, M.H., Philos. Mag. Lett. 62, 159 (1990).CrossRefGoogle Scholar
22.Woodward, C. and Mac, J.M.Laren, Philos. Mag. A 74, 337 (1996).CrossRefGoogle Scholar
23.Ehmann, J. and Fähnle, M., Philos. Mag. A 77, 701 (1998).CrossRefGoogle Scholar
24.Wiezorek, J.M.K. and Humphreys, C.J., Scr. Metall. Mater. 33, 451 (1995).CrossRefGoogle Scholar
25.Hemker, K.J., Viguier, B., and Mills, M.J., Mater. Sci. Eng. A 164, 391 (1993).CrossRefGoogle Scholar
26.Paidar, V., Inui, H., Kishida, K., and Yamaguchi, M., Mater. Sci. Eng. A 233, 111 (1997).CrossRefGoogle Scholar
27.Greenberg, B.A., Phys. Status Solidi 42, 459 (1970).CrossRefGoogle Scholar
28.Greenberg, B.A., Antonova, O.V., Indenbaum, V.N., Karkina, L.I., Notkin, A.B., Ponomarev, M.V., and Smirnov, L.V., Acta Metall. Mater. 39, 233 (1991).CrossRefGoogle Scholar
29.Jiao, S., Bird, N., Hirsch, P.B., and Taylor, G., Philos. Mag. A 78, 777 (1998).CrossRefGoogle Scholar
30.Jiao, S., Bird, N., Hirsch, P.B., and Taylor, G., Philos. Mag. A 79, 609 (1999).CrossRefGoogle Scholar
31.Jiao, S., Bird, N., Hirsch, P.B., and Taylor, G., Philos. Mag. A 81, 213 (2001).CrossRefGoogle Scholar
32.Rao, S., Woodward, C., Simmons, J., and Dimiduk, D., in High-Temperature Ordered Intermetallic Alloys VI, edited by Horton, J., Baker, I., Noebe, R.D., and Schwartz, D.S. (Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, PA, 1995), p. 129.Google Scholar
33.Grishick, A. and Vitek, V., in High-Temperature Ordered Intermetallic Alloys VI, edited by Horton, J., Baker, I., Noebe, R.D., and Schwartz, D.S. (Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, PA, 1995), p. 145.Google Scholar
34.Simmons, J.P., Rao, S.I., and Dimiduk, D.M., Philos. Mag. A 75, 1299 (1997).CrossRefGoogle Scholar
35.Panova, J. and Farkas, D., Philos. Mag. A 78, 389 (1998).CrossRefGoogle Scholar
36.Hug, G., Loiseau, A., and Veyssiere, P., Philos. Mag. A 57, 499 (1988).CrossRefGoogle Scholar
37.Kumar, M., Sriram, S., Schwartz, A.J., and Vasudevan, V.K., Philos. Mag. Lett. 79, 315 (1999).CrossRefGoogle Scholar
38.Inkson, B.J. and Humphreys, C.J., in High-Temperature Ordered Intermetallic Alloys VI, edited by Horton, J., Baker, I., Noebe, R.D., and Schwartz, D.S. (Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, PA, 1995), p. 605.Google Scholar
39.Inkson, B.J., Philos. Mag. A 77, 715 (1998).CrossRefGoogle Scholar
40.Wang, P., Kumar, M., Veeraraghavan, D., and Vasudevan, V.K., Acta Mater. 46, 13 (1998).CrossRefGoogle Scholar
41.Singh, S.R. and Howe, J.M., Philos. Mag. A 66, 739 (1992).CrossRefGoogle Scholar
42.Kad, B.K. and Fraser, H.L., Philos. Mag. Lett. 68, 21 (1993).CrossRefGoogle Scholar
43.Zupan, M. and Hemker, K.J., in Gamma Titanium Aluminides 1999, edited by Kim, Y.W., Dimiduk, D.M., and Loretto, M.H. (TMS, Warrendale, PA, 1999), p. 89.Google Scholar
44.Zghal, S., Naka, S., and Couret, A., Acta Mater. 45, 3005 (1997).CrossRefGoogle Scholar
45.Kim, M-C., Nomura, M., Vitek, V., and Pope, D.P., in High-Temperature Ordered Intermetallic Alloys VIII, edited by George, E.P., Mills, M.J., and Yamaguchi, M. (Mater. Res. Soc. Proc. 552, Warrendale, PA, 1999), p. KK3.1.1.Google Scholar
46.Fujiwara, T., Nakamura, A., Hosomi, M., Nishitani, S.R., Shirai, Y., Yamaguchi, M., Philos. Mag. A 61, 591 (1990).CrossRefGoogle Scholar