Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T15:42:49.887Z Has data issue: false hasContentIssue false

Plastic zone at crack tip: A nanolab for formation and study of metallic glassy nanostructures

Published online by Cambridge University Press:  31 January 2011

Wei H. Wang*
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
A. Lindsay Greer
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, United Kingdom
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report that various metallic glassy nanostructures including nanoridges, nanocones, nanowires, nanospheres, and nanoscale-striped patterns are spontaneously formed on the fracture surface of bulk metallic glasses at room temperature. A clear correlation between the dimensions of these nanostructures and the size of the plastic zone at the crack tip has been found, providing a way to control nanostructure sizes by controlling the plastic zone size intrinsically or extrinsically. This approach to forming metallic glassy nanostructures also has implications for understanding the deformation and fracture mechanisms of metallic glasses.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Heath, J.R.: Nanoscale materials. Acc. Chem. Res. 32, 388 (1999).CrossRefGoogle Scholar
2Bosbach, J.: Ultrafast dephasing of surface plasmon excitation in silver nanoparticles: Influence of particle size, shape, and chemical surrounding. Phys. Rev. Lett. 89, 257404 (2002).CrossRefGoogle ScholarPubMed
3Martin, C.R.: Nanomaterials: A membrane-based synthetic approach. Science 266, 1961 (1994).CrossRefGoogle ScholarPubMed
4Ahmadi, T.S., Wang, Z.L., Green, T.C., Henglein, A. and EI-Sayed, M.A.: Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924 (1996).CrossRefGoogle ScholarPubMed
5Wang, Y.M., Chen, M.W., Zhou, F.H. and Ma, E.: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).CrossRefGoogle Scholar
6Suslick, K.S., Choe, S.B., Cichowlas, A.A. and Grinstaff, M.W.: Sonochemical synthesis of amorphous iron. Nature 353, 414 (1991).CrossRefGoogle Scholar
7Ikeda, H., Qi, Y., Çagin, T., Samwer, K., Johnson, W.L., and W.A. Goddard III: Strain rate induced amorphization in metallic nanowires. Phys. Rev. Lett. 82, 2900 (1999).Google Scholar
8Koh, S.J.A., Lee, H.P., Lu, C. and Cheng, Q.H.: Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Phys. Rev. B: Con-dens. Matter 72, 085414 (2005).CrossRefGoogle Scholar
9Wang, D.X., Zhao, J.W., Hu, S., Yin, X., Liang, S., Liu, Y.H. and Deng, S.Y.: Where, and how, does a nanowire break? Nano Lett. 7, 1208 (2007).CrossRefGoogle ScholarPubMed
10Nakayama, K.S., Yokoyama, Y., Xie, G., Zhang, Q.S., Chen, M.W., Sakurai, T. and Inoue, A.: Metallic glass nanowire. Nano Lett. 8, 516 (2008).CrossRefGoogle ScholarPubMed
11Ashby, M.F. and Greer, A.L.: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).CrossRefGoogle Scholar
12Schuh, C.A., Hufnagel, T.C. and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).CrossRefGoogle Scholar
13Zhang, B., Zhao, D.Q., Pan, M.X., Wang, W.H. and Greer, A.L.: Amorphous metallic plastic. Phys. Rev. Lett. 94, 205502 (2005).CrossRefGoogle ScholarPubMed
14Lewandowski, J.J. and Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006).CrossRefGoogle Scholar
15Zhang, Y., Stelmashenko, N.A., Barber, Z.H., Wang, W.H., Lewandowski, J.J. and Greer, A.L.: Local temperature rises during mechanical testing of metallic glasses. J. Mater. Res. 22, 419 (2007).CrossRefGoogle Scholar
16Xi, X.K., Zhao, D.Q., Pan, M.X., Wang, W.H., Wu, Y. and Lewandowski, J.J.: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).CrossRefGoogle ScholarPubMed
17Wang, G., Zhao, D.Q., Bai, H.Y., Pan, M.X., Xia, A.L., Han, B.S., Xi, X.K., Wu, Y. and Wang, W.H.: Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses. Phys. Rev. Lett. 98, 235501 (2007).CrossRefGoogle ScholarPubMed
18Ewalds, H.L. and Wanhill, R.J.H.: Fracture Mechanics (Edward Arnold, London, 1984), pp. 5663.Google Scholar
19Lowhaphandu, P. and Lewandowski, J.J.: Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be. Scr. Mater. 38, 1811 (1998).CrossRefGoogle Scholar
20Argon, A.S.: The Physics of Strength and Plasticity (MIT Press, Cambridge, MA, 1969), p. 286.Google Scholar
21Flores, K.M. and Dauskardt, R.H.: Local heating associated with crack tip plasticity in Zr-Ti-Ni-Cu-Be bulk amorphous metals. J. Mater. Res. 14, 638 (1999).CrossRefGoogle Scholar
22Carslaw, H.S. and Jaeger, J.C.: Conduction of Heat in Solids, 2nd ed. (Clarendon Press, Oxford, UK, 1959), pp. 256258.Google Scholar
23Argon, A.S. and Salama, M.: The mechanism of fracture in glassy materials capable of some inelastic deformation. Mater. Sci. Eng. 23, 219 (1976).CrossRefGoogle Scholar
24Guo, H., Yan, P.F., Wang, Y.B., Tan, J., Zhang, Z.F., Sui, M.L. and Ma, E.: Tensile ductility and necking of metallic glass. Nat. Mater. 6, 735 (2007).CrossRefGoogle ScholarPubMed
25Inoue, A.: Stabilization and high strain-rate superplasticity of metallic supercooled liquid. Mater. Sci. Eng., A 267, 171 (1999).CrossRefGoogle Scholar
26Vormelker, A.H., Vatamanu, O.L., Kecskes, L. and Lewandowski, J.J.: Effects of test temperature and loading conditions on the tensile properties of a Zr-based bulk metallic glass. Mater. Trans. A 39, 1922 (2008).CrossRefGoogle Scholar
27Lewandowski, J.J., Wang, W.H. and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).CrossRefGoogle Scholar
28Lewandowski, J.J., Shazly, M. and Nouri, A.S.: Intrinsic and extrinsic toughening of metallic glasses. Scr. Mater. 54, 337 (2006).CrossRefGoogle Scholar
29Guo, F.Q., Wang, H.J., Poon, S.J. and Shiflet, G.J.: Ductile titanium-based glassy alloy ingots. Appl. Phys. Lett. 86, 091907 (2005).CrossRefGoogle Scholar
30Kulawansa, D.M., Dickinson, J.T., Langford, S.C. and Watanabe, Y.: Scanning tunneling microscope observations of metallic glass fracture surfaces. J. Mater. Res. 8, 2543 (1993).CrossRefGoogle Scholar
31Lewandowski, J.J.: Effects of annealing and changes in stress state on fracture toughness of bulk metallic glass. Mater. Trans., JIM 42, 633 (2001).CrossRefGoogle Scholar
32Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).CrossRefGoogle ScholarPubMed
33Gu, X.J., McDermott, A.G., Poon, S.J. and Shiflet, G.J.: Critical Poisson's ratio for plasticity in Fe-Mo-C-B-Ln bulk amorphous steel. Appl. Phys. Lett. 88, 211905 (2006).CrossRefGoogle Scholar
34Wang, W.H.: The correlation between the elastic constants and properties in bulk metallic glasses. J. Appl. Phys. 99, 093506 (2006).CrossRefGoogle Scholar