Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T21:28:38.416Z Has data issue: false hasContentIssue false

Plastic Deformation and Mechanical Softening of Pd40Cu30Ni10P20 Bulk Metallic Glass During Nanoindentation

Published online by Cambridge University Press:  03 March 2011

A. Concustell
Affiliation:
Departament de Física, Facultat de Ciències, Edifici Cc, Universitat Autònoma Barcelona,08193 Bellaterra, Barcelona, Spain
J. Sort
Affiliation:
Departament de Física, Facultat de Ciències, Edifici Cc, Universitat Autònoma Barcelona,08193 Bellaterra, Barcelona, Spain
G. Alcalá
Affiliation:
IFW Dresden, Institute of Metallic Materials, D-01171, Dresden, Germany
S. Mato
Affiliation:
IFW Dresden, Institute of Metallic Materials, D-01171, Dresden, Germany
A. Gebert
Affiliation:
IFW Dresden, Institute of Metallic Materials, D-01171, Dresden, Germany
J. Eckert*
Affiliation:
Physical Metallurgy Division, Department of Materials and Geo-Sciences, Darmstadt University of Technology, D-64287 Darmstadt, Germany
M.D. Baró
Affiliation:
Departament de Física, Facultat de Ciències, Edifici Cc, Universitat Autònoma Barcelona,08193 Bellaterra, Barcelona, Spain
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanoindentation tests of Pd40Cu30Ni10P20 bulk metallic glass were performed over a wide range of indentation rates (from 0.04 up to 6.4 mN s−1) under the standard load control mode. New results using the feedback displacement control mode are also presented. The dependence of the pop-in formation on the loading rate is investigated. Variations in hardness and reduced elastic modulus as a function of the indentation rate are observed. A softening effect occurs when increasing the loading rate. This is explained by the differences in plastic deformation achieved at different indentation rates. The displacement control mode was used to avoid the shear localization of the free volume, leading to the almost complete absence of pop-ins along the loading curve. The obtained results suggest that plastic flow in bulk metallic glasses is governed by the rate of creation of free volume, which depends on the strain rate and its localization into shear bands.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
2Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
3Gebert, A., Mudali, U.K., Eckert, J. and Schultz, L.: Electrochemical reactivity of zirconium-based bulk metallic glasses, in Amorphous and Nanocrystalline Metals, edited by Busch, R., Hufnagel, T.C., Eckert, J., Inoue, A., Johnson, W.L., and Yavari, A.R. (Mater. Res. Soc. Symp. Proc. 806, Warrendale, PA, 2004), p. 369.Google Scholar
4Concustell, A., Zielinska, M., Révész, Á., Varga, L.K., Suriñach, S. and Baró, M.D.: Thermal characterization of Cu60ZrXTi40−x metallic glasses (x = 15, 20, 22, 25, 30). Intermetallics 12, 1063 (2004).CrossRefGoogle Scholar
5Bruck, H.A., Christman, T., Rosakis, A.J. and Johnson, W.L.: Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys. Scripta Metall. Mater. 30, 429 (1994).CrossRefGoogle Scholar
6Leonhard, A., Xing, L.Q., Heilmaier, M., Gebert, A., Eckert, J. and Schultz, L.: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10, 805 (1998).CrossRefGoogle Scholar
7Pang, S.J., Zhang, T., Asami, K. and Inoue, A.: Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance. Acta Mater. 50, 489 (2002).CrossRefGoogle Scholar
8Davis, L.A. and Kavesh, S.: Deformation and fracture of an amorphous metallic alloy at high-pressure. J. Mater. Sci. 10, 453 (1975).CrossRefGoogle Scholar
9Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A. and Higashi, K.: Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension. Scripta Mater. 46, 43 (2002).CrossRefGoogle Scholar
10Subhash, G., Dowding, R.J. and Kecskes, L.J.: Characterization of uniaxial compressive response of bulk amorphous Zr–Ti–Cu– Ni–Be alloy. Mater. Sci. Eng. A 334, 33 (2002).CrossRefGoogle Scholar
11Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
12Li, J., Spaepen, F. and Hufnagel, T.C.: Nanometer-scale defects in shear bands in a metallic glass. Philos. Mag. 82, 2623 (2002).CrossRefGoogle Scholar
13Li, J., Wang, L. and Hufnagel, T.C.: Characterization of nanometer-scale defects in metallic glasses by quantitative high-resolution transmission electron microscopy. Phys. Rev. B 65, 144201 (2002).CrossRefGoogle Scholar
14Wright, W.J., Hufnagel, T.C. and Nix, W.D.: Free volume coalescence and void formation in shear bands in metallic glass. J. Appl. Phys. 93, 1432 (2003).CrossRefGoogle Scholar
15Kimura, H. and Masumoto, T.: A model of the mechanics of serrated flow in an amorphous alloy. Acta Metall. 31, 231 (1983).CrossRefGoogle Scholar
16Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A. and Higashi, K.: Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071 (2002).CrossRefGoogle Scholar
17Turnbull, D. and Cohen, M.H.: Concering reconstructive tranformation and formation of glass. J. Chem. Phys. 29, 1049 (1958).CrossRefGoogle Scholar
18Duine, P.A., Sietsma, J. and van den Beukel, A.: Defect production and annihilation near equilibrium in amorphous Pd40Ni40P20 investigated from viscosity data. Acta Metall. Mater. 40, 743 (1992).CrossRefGoogle Scholar
19Van Aken, B., de Hey, P. and Sietsma, J.: Structural relaxation and plastic flow in amorphous La50Al25Ni25. Mater. Sci. Eng. A 278, 247 (2000).CrossRefGoogle Scholar
20Golovin, Y.I., Ivolgin, V.I., Khonik, V.A., Kitagawa, K. and Tyurin, A.I.: Serrated plastic flow during nanoindentation of a bulk metallic glass. Scripta Mater. 45, 947 (2001).CrossRefGoogle Scholar
21Schuh, C.A., Argon, A.S., Nieh, T.G. and Wadsworth, J.: The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal. Philos. Mag. A 83, 2585 (2003).CrossRefGoogle Scholar
22Schuh, C.A., Nieh, T.G. and Kawamura, Y.: Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17, 1651 (2002).CrossRefGoogle Scholar
23Schuh, C.A. and Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).CrossRefGoogle Scholar
24Greer, A.L., Castellero, A., Madge, S.V., Walker, I.T. and Wilde, J.R.: Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys. Mater. Sci. Eng. A 375–377, 1182 (2004).CrossRefGoogle Scholar
25Fischer-Cripps, A.C.: A review of analysis methods for sub-micron indentation testing. Vacuum 58, 569 (2000).CrossRefGoogle Scholar
26Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
27Chinh, N.Q., Gubicza, J., Kovács, Zs. and Lendvai, J.: Depth-sensing indentation tests in studying plastic instabilities. J. Mater. Res. 19, 31 (2004).CrossRefGoogle Scholar
28Dieter, G.E.: Mechanical Metallurgy (McGraw-Hill Book Company, London, U.K., 1988).Google Scholar
29Larsson, P.L., Giannakopoulos, A.E., Soderlund, E., Rowcliffe, J. and Vestergaard, R.: Analysis of Berkovich indentation. Int. J. Sol. Struct. 33, 221 (1996).CrossRefGoogle Scholar
30Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).CrossRefGoogle Scholar
31Jiang, W.H. and Atzmon, M.: Rate dependence of serrated flow in a metallic glass. J. Mater. Res. 18, 755 (2003).CrossRefGoogle Scholar
32Steif, P.S., Spaepen, F. and Hutchinson, J.W.: Strain localization in amorphous metals. Acta Metall. 30, 447 (1982).CrossRefGoogle Scholar
33Schuh, C.A., Lund, A.C. and Nieh, T.G.: New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modelling. Acta Mater. 52, 5879 (2004).CrossRefGoogle Scholar