Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T01:02:20.541Z Has data issue: false hasContentIssue false

Pine-tree-like morphologies of nitrogen-doped carbon nanotubes: Electron field emission enhancement

Published online by Cambridge University Press:  30 September 2014

María Luisa García-Betancourt
Affiliation:
Advanced Materials Division, IPICYT, San Luis Potosí 78216, México; and Department of Physics and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA
Néstor Perea-López
Affiliation:
Department of Physics and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA
Sofía M. Vega-Díaz
Affiliation:
Research Center for Exotic Nanocarbons (JST), Shinshu University, Nagano-city 380-8553, Japan
Florentino López-Urías
Affiliation:
Advanced Materials Division, IPICYT, San Luis Potosí 78216, México
Ana Laura Elías
Affiliation:
Department of Physics and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA
Josué Ortiz-Medina
Affiliation:
Research Center for Exotic Nanocarbons (JST), Shinshu University, Nagano-city 380-8553, Japan
Emilio Muñoz-Sandoval*
Affiliation:
Advanced Materials Division, IPICYT, San Luis Potosí 78216, México
Mauricio Terrones
Affiliation:
Department of Physics and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA; Research Center for Exotic Nanocarbons (JST), Shinshu University, Nagano-city 380-8553, Japan; and Department of Chemistry and Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nitrogen-doped multiwalled carbon nanotube (CNT) bundles exhibiting pine-tree-like morphologies were synthesized on silicon–silicon oxide (Si/SiO2) substrates using a pressure-controlled chemical vapor deposition process. Electron field emission (FE) measurements showed a notable emission improvement at low turn-on voltages for the CNT pine-like morphologies (e.g., 0.59 V/µm) in comparison with standard aligned N-doped CNTs (>1.5 V/µm). We envisage that these pine-tree-like structures could be potentially useful in the fabrication of efficient FE and photonic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kroto, H.W., Heath, J.R., Obrien, S.C., Curl, R.F., and Smalley, R.E.: C-60: Buckminsterfullerene. Nature 318(6042), 162 (1985).Google Scholar
Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56 (1991).Google Scholar
Oberlin, A., Endo, M., and Koyama, T.: Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32(3), 335349 (1976).Google Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666669 (2004).Google Scholar
Munoz-Sandoval, E., Agarwal, V., Escorcia-Garcia, J., Ramirez-Gonzalez, D., Martinez-Mondragon, M.M., Cruz-Silva, E., Meneses-Rodriguez, D., Rodriguez-Manzo, J.A., Terrones, H., and Terrones, M.: Architectures from aligned nanotubes using controlled micropatterning of silicon substrates and electrochemical methods. Small 3(7), 11571163 (2007).Google Scholar
Wang, B.B., Dong, G.B., and Xu, X.Z.: Carbon fractals grown from carbon nanotips by plasma-enhanced hot filament chemical vapor deposition. Appl. Surf. Sci. 258(5), 16771681 (2011).CrossRefGoogle Scholar
Houdellier, F., Masseboeuf, A., Monthioux, M., and Hytch, M.J.: New carbon cone nanotip for use in a highly coherent cold field emission electron microscope. Carbon 50(5), 20372044 (2012).Google Scholar
Cao, G., Lee, Y.Z., Peng, R., Liu, Z., Rajaram, R., Calderon-Colon, X., An, L., Wang, P., Phan, T., Sultana, S., Lalush, D.S., Lu, J.P., and Zhou, O.: A dynamic micro-CT scanner based on a carbon nanotube field emission x-ray source. Phys. Med. Biol. l54(8), 23232340 (2009).Google Scholar
Talin, A.A., Dean, K.A., and Jaskie, J.E.: Field emission displays: A critical review. Solid State Electron. 45(6), 963976 (2001).CrossRefGoogle Scholar
Cheng, Y., Zhang, J., Lee, Y.Z., Gao, B., Dike, S., Lin, W., Lu, J.P., and Zhou, O.: Dynamic radiography using a carbon-nanotube-based field-emission x-ray source. Rev. Sci. Instrum. 75(10), 32643267 (2004).Google Scholar
de Jonge, N.: Carbon nanotube electron sources for electron microscopes. Adv. Imaging Electron Phys. 156, 203233 (2009).Google Scholar
Constantopoulos, K.T., Shearer, C.J., Ellis, A.V., Voelcker, N.H., and Shapter, J.C.: Carbon nanotubes anchored to silicon for device fabrication. Adv. Mater. 22(5), 557571 (2010).Google Scholar
Bonard, J.M., Salvetat, J.P., Stockli, T., Forro, L., and Chatelain, A.: Field emission from carbon nanotubes: Perspectives for applications and clues to the emission mechanism. Appl. Phys. A 69(3), 245254 (1999).Google Scholar
Perea-Lopez, N., Rebollo-Plata, B., Briones-Leon, J.A., Morelos-Gomez, A., Hernandez-Cruz, D., Hirata, G.A., Meunier, V., Botello-Mendez, A.R., Charlier, J.C., Maruyama, B., Munoz-Sandoval, E., Lopez-Urias, F., Terrones, M., and Terrones, H.: Millimeter-long carbon nanotubes: Outstanding electron-emitting sources. ACS Nano 5(6), 50725077 (2011).Google Scholar
Zhong, Z., Lee, G.I., Bin Mo, C., Hong, S.H., and Kang, J.K.: Tailored field-emission property of patterned carbon nitride nanotubes by a selective doping of substitutional N(sN) and pyridine-like N(pN) atoms. Chem. Mater. 19(12), 29182920 (2007).Google Scholar
Ray, S.C., Palnitkar, U., Pao, C.W., Tsai, H.M., Pong, W.F., Lin, I.N., Papakonstantinou, P., Chen, L.C., and Chen, K.H.: Enhancement of electron field emission of nitrogenated carbon nanotubes on chlorination. Diamond Relat. Mater. 18(2–3), 457460 (2009).CrossRefGoogle Scholar
Jiang, W.F., Hao, H.S., Wang, Y.S., Xu, L., and Zhang, T.J.: Influence of growth time on field emission properties from carbon nanotubes deposited on arrayed nanoporous silicon pillars. Appl. Surf. Sci. 257(15), 63366339 (2011).Google Scholar
Fan, S.S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., and Dai, H.J.: Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512514 (1999).Google Scholar
Nguyen-Vu, T.D.B., Chen, H., Cassell, A.M., Andrews, R., Meyyappan, M., and Li, J.: Vertically aligned carbon nanofiber arrays: An advance toward electrical-neural interfaces. Small 2(1), 8994 (2006).Google Scholar
de Volder, M., Tawfick, S.H., Park, S.J., Copic, D., Zhao, Z.Z., Lu, W., and Hart, A.J.: Diverse 3D microarchitectures made by capillary forming of carbon nanotubes. Adv. Mater. 22(39), 43844389 (2010).Google Scholar
Lim, X.D., Foo, H.W.G., Chia, G.H., and Sow, C.H.: Capillarity-assisted assembly of carbon nanotube microstructures with organized initiations. ACS Nano 4(2), 10671075 (2010).Google Scholar
Hiraki, H., Jiang, N., Wang, H.X., and Hiraki, A.: Electron emission from nano-structured carbon composite materials - An important role of the interface for enhancing the emission. J. Phys. IV 132, 111115 (2006).Google Scholar
Wang, B.B., Cheng, Q.J., Zhong, X.X., Wang, Y.Q., Chen, Y.A., and Ostrikov, K.: Enhanced electron field emission from plasma-nitrogenated carbon nanotips. J. Appl. Phys. 111(4), 044317 (2012).Google Scholar
Cervantes-Sodi, F., Vilatela, J.J., Jimenez-Rodriguez, J.A., Reyes-Gutierrez, L.G., Rosas-Melendez, S., Iniguez-Rabago, A., Ballesteros-Villarreal, M., Palacios, E., Reiband, G., and Terrones, M.: Carbon nanotube bundles self-assembled in double helix microstructures. Carbon 50(10), 36883693 (2012).Google Scholar
Zhao, M.Q., Zhang, Q., Tian, G.L., Huang, J.Q., and Wei, F.: Space confinement and rotation stress induced self-organization of double-helix nanostructure: A nanotube twist with a moving catalyst head. ACS Nano 6(5), 45204529 (2012).Google Scholar
Jeong, H.M., Lee, J.W., Shin, W.H., Choi, Y.J., Shin, H.J., Kang, J.K., and Choi, J.W.: Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11(6), 24722477 (2011).Google Scholar
Wang, Y., Shao, Y.Y., Matson, D.W., Li, J.H., and Lin, Y.H.: Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4), 17901798 (2010).Google Scholar
Ghosh, K., Kumar, M., Maruyama, T., and Ando, Y.: Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution. Carbon 48(1), 191200 (2010).Google Scholar
Cruz-Silva, E., Cullen, D.A., Gu, L., Romo-Herrera, J.M., Munoz-Sandoval, E., Lopez-Urias, F., Sumpter, B.G., Meunier, V., Charlier, J.C., Smith, D.J., Terrones, H., and Terrones, M.: Heterodoped nanotubes: Theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes. ACS Nano 2(3), 441448 (2008).Google Scholar
Ionescu, M.I., Zhang, Y., Li, R.Y., Abou-Rachid, H., and Sun, X.L.: Nitrogen-doping effects on the growth, structure and electrical performance of carbon nanotubes obtained by spray pyrolysis method. Appl. Surf. Sci. 258(10), 45634568 (2012).Google Scholar
Maldonado, S., Morin, S., and Stevenson, K.J.: Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44(8), 14291437 (2006).Google Scholar
Sharifi, T.I., Nitze, F., Barzegar, H.R., Tai, C-W., Mazurkiewicz, M., Malolepsky, A., Stobinski, L., and Wågberg, T.: Nitrogen doped multi wall carbon nanotubes produced by CVD-correlating XPS and Raman spectroscopy for the study of nitrogen inclusion. Carbon 50(10), 35353541 (2012).Google Scholar
Padya, B., Jain, P.K., Padmanabham, G., Ravi, M., and Bhat, K.S.: Highly-ordered nitrogen doped carbon nanotube novel structures of aligned carpet for enhanced field emission properties. AIP Conf. Proc. 1538, 196199 (2013).Google Scholar
Terrones, M., Terrones, H., Grobert, N., Hsu, W.K., Zhu, Y.Q., Hare, J.P., Kroto, H.W., Walton, D.R.M., Kohler-Redlich, P., Ruhle, M., Zhang, J.P., and Cheetham, A.K.: Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures. Appl. Phys. Lett. 75(25), 39323934 (1999).Google Scholar
Han, W.Q., Kohler-Redlich, P., Seeger, T., Ernst, F., Ruhle, M., Grobert, N., Hsu, W.K., Chang, B.H., Zhu, Y.Q., Kroto, H.W., Walton, D.R.M., Terrones, M., and Terrones, H.: Aligned CNx nanotubes by pyrolysis of ferrocene/C-60 under NH3 atmosphere. Appl. Phys. Lett. 77(12), 18071809 (2000).Google Scholar
Sumpter, B.G., Meunier, V., Romo-Herrera, J.M., Cruz-Silva, E., Cullen, D.A., Terrones, H., Smith, D.J., and Terrones, M.: Nitrogen-mediated carbon nanotube growth: Diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation. ACS Nano 1(4), 369375 (2007).Google Scholar
Campos-Delgado, J., Romo-Herrera, J.M., Jia, X.T., Cullen, D.A., Muramatsu, H., Kim, Y.A., Hayashi, T., Ren, Z.F., Smith, D.J., Okuno, Y., Ohba, T., Kanoh, H., Kaneko, K., Endo, M., Terrones, H., Dresselhaus, M.S., and Terrones, M.: Bulk production of a new form of sp(2) carbon: Crystalline graphene nanoribbons. Nano Lett. 8(9), 27732778 (2008).Google Scholar
Liu, Z.Y. and Kong, X.H.: Dendritic carbon architectures formed by nanotube core-directed diffusion-limited aggregation of nanoparticles. Phys. Chem. Chem. Phys. 12(32), 94759480 (2010).Google Scholar
Soin, N., Roy, S.S., Ray, S.C., and McLaughlin, J.A.: Excitation energy dependence of Raman bands in multiwalled carbon nanotubes. J. Raman Spectrosc. 41(10), 12271233 (2010).Google Scholar
Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G., and Saito, R.: Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10(3), 751758 (2010).Google Scholar
Tian, Y., Li, C.F., Jiang, H.H., Li, H., and Zuo, R.: Numerical simulation on turbulent flows in vertical chemical vapor deposition reactors. J. Cryst. Growth 318(1), 168172 (2011).Google Scholar
Koos, A.A., Nicholls, R.J., Dillon, F., Kertesz, K., Biro, L.P., Crossley, A., and Grobert, N.: Tailoring gas sensing properties of multi-walled carbon nanotubes by in situ modification with Si, P, and N. Carbon 50(8), 28162823 (2012).Google Scholar
Liu, H., Zhang, Y., Li, R.Y., Sun, X.L., Desilets, S., Abou-Rachid, H., Jaidann, M., and Lussier, L.S.: Structural and morphological control of aligned nitrogen-doped carbon nanotubes. Carbon 48(5), 14981507 (2010).Google Scholar
Gupta, S. and Patel, R.J.: Changes in the vibrational modes of carbon nanotubes induced by electron-beam irradiation: Resonance Raman spectroscopy. J. Raman Spectrosc. 38(2), 188199 (2007).Google Scholar
Elias, A.L., Ayala, P., Zamudio, A., Grobosch, M., Cruz-Silva, E., Romo-Herrera, J.M., Campos-Delgado, J., Terrones, H., Pichler, T., and Terrones, M.: Spectroscopic characterization of N-doped single-walled carbon nanotube strands: An x-ray photoelectron spectroscopy and Raman study. J. Nanosci. Nanotechnol. 10(6), 39593964 (2010).Google Scholar
Lv, R., Li, Q., Botello-Mendez, A.R., Hayashi, T., Wang, B., Berkdemir, A., Hao, Q.Z., Elias, A.L., Cruz-Silva, R., Gutierrez, H.R., Kim, Y.A., Muramatsu, H., Zhu, J., Endo, M., Terrones, H., Charlier, J.C., Pan, M.H., and Terrones, M.: Nitrogen-doped graphene: Beyond single substitution and enhanced molecular sensing. Sci. Rep. 2, 546 (2012).Google Scholar
Fursey, G.N.: Field emission in vacuum micro-electronics. Appl. Surf. Sci. 215(1–4), 113134 (2003).Google Scholar
Sharma, H., Kaushik, V., Girdhar, P., Singh, V.N., Shukla, A.K., and Vankar, V.D.: Enhanced electron emission from titanium coated multiwalled carbon nanotubes. Thin Solid Films 518(23), 69156920 (2010).Google Scholar
de Jonge, N. and Bonard, J.M.: Carbon nanotube electron sources and applications. Philos. Trans. R. Soc. London A 362(1823), 22392266 (2004).Google Scholar
Bai, X., Zhang, W.J., and Zhang, G.M.: Influence of field evaporation treatment on the field emission properties of carbon nanotubes array. Appl. Surf. Sci. 256(12), 39123916 (2010).CrossRefGoogle Scholar
Zeng, B. and Ren, Z.: Nanoscience in Biomedicine (Tshinghua University Press, Beijing, Berlin, 2009).Google Scholar
Eletskii, A.V. and Bocharov, G.S.: Emission properties of carbon nanotubes and cathodes on their basis. Plasma Sources Sci. Technol. 18(3), 034013 (2009).Google Scholar
Sun, X.: Designing efficient field emission into ZnO. SPIE Newsroom doi:10.1117/1112.1102.0101 (2006).Google Scholar
Lahiri, I., Seelaboyina, R., Hwang, J.Y., Banerjee, R., and Choi, W.B.: Enhanced field emission from multi-walled carbon nanotubes grown on pure copper substrate. Carbon 48(5), 15311538 (2010).Google Scholar
Yu, S.S. and Zheng, W.T.: Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons. Nanoscale 2(7), 10691082 (2010).Google Scholar
Killian, J.L., Zuckerman, N.B., Niemann, D.L., Ribaya, B.P., Rahman, M., Espinosa, R., Meyyappan, M., and Nguyen, C.V.: Field emission properties of carbon nanotube pillar arrays. J. Appl. Phys. 103(6), 064312 (2008).Google Scholar
Jo, S.H., Tu, Y., Huang, Z.P., Carnahan, D.L., Wang, D.Z., and Ren, Z.F.: Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Appl. Phys. Lett. 82(20), 35203522 (2003).Google Scholar
Barreiro, A., Hampel, S., Rummeli, M.H., Kramberger, C., Gruneis, A., Biedermann, K., Leonhardt, A., Gemming, T., Buchner, B., Bachtold, A., and Pichler, T.: Thermal decomposition of ferrocene as a method for production of single-walled carbon nanotubes without additional carbon sources. J. Phys. Chem. B 110(42), 2097320977 (2006).Google Scholar
Leonhardt, A., Hampel, S., Muller, C., Monch, I., Koseva, R., Ritschel, M., Elefant, D., Biedermann, K., and Buchner, B.: Synthesis, properties, and applications of ferromagnetic-filled carbon nanotubes. Chem. Vap. Deposition 12(6), 380387 (2006).CrossRefGoogle Scholar
Koprinarov, N., Konstantinova, M., and Marinov, M.: Ferromagnetic nanomaterials obtained by thermal decomposition of ferrocene. Solid State Phenom. 159, 105108 (2010).Google Scholar
Zhang, L., Li, Z.R., Tan, Y.Q., Lolli, G., Sakulchaicharoen, N., Requejo, F.G., Mun, B.S., and Resasco, D.E.: Influence of a top crust of entangled nanotubes on the structure of vertically aligned forests of single-walled carbon nanotubes. Chem. Mater. 18(23), 56245629 (2006).Google Scholar
Bower, C., Zhu, W., Jin, S.H., and Zhou, O.: Plasma-induced alignment of carbon nanotubes. Appl. Phys. Lett. 77(6), 830832 (2000).Google Scholar
Supplementary material: File

García-Betancourt et al. supplementary material

Supplementary figures and tables

Download García-Betancourt et al. supplementary material(File)
File 4.7 MB