Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T00:38:54.929Z Has data issue: false hasContentIssue false

Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses

Published online by Cambridge University Press:  03 March 2011

J.M. Macak
Affiliation:
Department of Materials Science, WW4-LKO, University of Erlangen-Nuremberg, D-91058 Erlangen, Germany
A. Ghicov
Affiliation:
Department of Materials Science, WW4-LKO, University of Erlangen-Nuremberg, D-91058 Erlangen, Germany
R. Hahn
Affiliation:
Department of Materials Science, WW4-LKO, University of Erlangen-Nuremberg, D-91058 Erlangen, Germany
H. Tsuchiya
Affiliation:
Department of Materials Science, WW4-LKO, University of Erlangen-Nuremberg, D-91058 Erlangen, Germany
P. Schmuki*
Affiliation:
Department of Materials Science, WW4-LKO, University of Erlangen-Nuremberg, D-91058 Erlangen, Germany
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The present work reports nitrogen doping of self-organized TiO2 nanotubular layers. Different thicknesses of the nanotubular layer architecture were formed by electrochemical anodization of Ti in different fluoride-containing electrolytes; tube lengths were 500 nm, 2.5 μm, and 6.1 μm. As-formed nanotube layers were annealed to an anatase structure and treated in ammonia environment at 550 °C to achieve nitrogen doping. The crystal structure, morphology, composition and photoresponse of the N-doped were characterized by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and photoelectrochemical measurements. Results clearly show that successful N-doping of the TiO2 nanotubular layers can be achieved upon ammonia treatment. The magnitude of the photoresponse in ultraviolet and visible light is strongly dependent on the thicknesses of the layers. This effect is ascribed to recombination effects along the tube length.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).CrossRefGoogle Scholar
2.Mills, A., Hunte, S.L.: An overview of semiconductor photocatalysis. J. Photochem. Photobiol., A: Chem. 108, 1 (1997).CrossRefGoogle Scholar
3.ÓRegan, B.Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).CrossRefGoogle Scholar
4.Macak, J.M., Tsuchiya, H., Ghicov, A., Schmuki, P.: Dye-sensitized anodic TiO2 nanotubes. Electrochem. Comm. 7, 1133 (2005).CrossRefGoogle Scholar
5.Anpo, M., Dohshi, S., Kitano, M., Hu, Y., Takeuchi, M., Matsuoka, M.: The preparation of highly efficient titanium oxide-based photofunctional materials. Ann. Rev. Mater. Res. 35, 1 (2005).CrossRefGoogle Scholar
6.Wilke, K., Breuer, H.D.: The influence of transition metal doping on the physical and photocatalytical properties of titania. J. Photochem. Photobiol., A 127, 107 (1999).Google Scholar
7.Sakthivel, S., Kisch, H.: Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem., Int. Ed. Engl. 42, 4908 (2003).CrossRefGoogle ScholarPubMed
8.Lin, L., Lin, W., Zhu, X., Zhao, B., Xie, Y.: Phospor-doped titania—A novel photocatalyst active in visible light. Chem. Lett. (Jpn.). 34, 284 (2005).CrossRefGoogle Scholar
9.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.: Visible-light photocatalyst in nitrogen-doped titanium oxides. Science 293, 269 (2001).CrossRefGoogle ScholarPubMed
10.Kosowska, B., Mozia, S., Morawski, A., Grznil, B., Janus, M., Kalucki, K.: The preparation of TiO2–nitrogen doped by calcination of TiO2· xH2O under ammonia atmosphere for visible light photocatalysis. Sol. Energy Mater. Sol. Cells 88, 269 (2005).CrossRefGoogle Scholar
11.Lindgren, T., Mwabora, J.M., Avendano, E., Jonsson, J., Hoel, A., Granvist, C.G., Lindquist, S.E.: Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive dc magnetron sputtering. J. Phys. Chem. B 107, 5709 (2003).CrossRefGoogle Scholar
12.Zwilling, V., Aucouturier, M., Darque-Ceretti, E.: Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim. Acta 45, 921 (1999).CrossRefGoogle Scholar
13.Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).CrossRefGoogle Scholar
14.Beranek, R., Hildebrand, H., Schmuki, P.: Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-St. Lett. 6, B12 (2003).CrossRefGoogle Scholar
15.Macak, J., Tsuchiya, H., Schmuki, P.: High-aspect ratio TiO2 nanotubes by anodization of titanium. Angew. Chem., Int. Ed. Engl. 44, 2100 (2005).CrossRefGoogle ScholarPubMed
16.Ghicov, A., Tsuchiya, H., Macak, J.M., Schmuki, P.: Titanium dioxide nanotubes prepared in phosphate electrolytes. Electrochem. Commun. 7, 505 (2005).CrossRefGoogle Scholar
17.Taveira, L.V., Macak, J.M., Tsuchiya, H., Dick, L.F.P., Schmuki, P.: Initiation and growth of self-organized TiO2 nanotubes anodically formed in (NH4)2SO4/NH4F electrolytes. J. Electrochem. Soc. 152, B405 (2005).CrossRefGoogle Scholar
18.Macak, J.M., Sirotna, K., Schmuki, P.: Self-organized porous titanium oxide prepared in Na2SO4/NaF. Electrochim. Acta 50, 3679 (2005).CrossRefGoogle Scholar
19.Macak, J.M., Tsuchiya, H., Taveira, L., Aldabergerova, S., Schmuki, P.: Smooth anodic TiO2 nanotubes. Angew. Chem., Int. Ed. Engl. 44, 7463 (2005).CrossRefGoogle ScholarPubMed
20.Macak, J.M., Tsuchiya, H., Bauer, S., Ghicov, A., Schmuki, P., Barczuk, P.J., Nowakowska, M.Z., Chojak, M., Kulesza, P.J.: Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles; Enhancement of the electrocatalytic oxidation of methanol. Electrochem. Commun. 7, 1417 (2005).CrossRefGoogle Scholar
21.Ghicov, A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Kleber, S., Schmuki, P.: TiO2 nanotube layers: Dose effects during nitrogen doping by ion implantation. Chem. Phys. Lett. 419, 426 (2006).CrossRefGoogle Scholar
22.Ghicov, A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Frey, L., Schmuki, P.: Nitrogen-doped TiO2 nanotube arrays with strongly enhanced photoresponse in the visible range. Nano Lett. 6, 1080 (2006).CrossRefGoogle Scholar
23.Vitiello, R.P., Macak, J.M., Ghicov, A., Tsuchiya, H., Dick, L.F.P., Schmuki, P.: N-doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochem. Commun. 8, 544 (2006).CrossRefGoogle Scholar
24.Beranek, R., Tsuchiya, H., Sugishima, T., Macak, J.M., Taveira, L., Fujimoto, S., Kisch, H., Schmuki, P.: Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. Appl. Phys. Lett. 87, 243114 (2005).CrossRefGoogle Scholar
25.Gärtner, W.W.: Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84 (1959).CrossRefGoogle Scholar
26.Johnson, E.J.: Semiconductors and Semimetals, Vol. 3 (Academic, New York, 1967), p. 153.Google Scholar
27.Dittrich, T.: Porous TiO2: Electron transport and application. Phys. Status Solidi A 182, 447 (2000).3.0.CO;2-G>CrossRefGoogle Scholar
28.Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).CrossRefGoogle ScholarPubMed
29.Saha, N.C., Tompkins, H.G.: Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study. J. Appl. Phys. 72, 3072 (1992).CrossRefGoogle Scholar