Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T09:58:42.533Z Has data issue: false hasContentIssue false

Photodetectors based on sensitized two-dimensional transition metal dichalcogenides—A review

Published online by Cambridge University Press:  30 October 2017

Congpu Mu
Affiliation:
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China; and Hebei Key Laboratory of Microstructure Material Physics, Yanshan University, Qinhuangdao 066004, People’s Republic of China
Jianyong Xiang*
Affiliation:
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China
Zhongyuan Liu*
Affiliation:
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China
*
a) Address all correspondence to these authors. e-mail: [email protected]
b) e-mail: [email protected]
Get access

Abstract

Atomically thin transition metal dichalcogenides (TMDCs), such as WS2 and MoS2, have opened up new opportunities for the next generation of optoelectronics owing to their unique properties such as optical transparency, high carrier mobility, widely tunable band gap, and strong light–matter interaction. The photodetection performance relies primarily on the light absorption efficiency and separation efficiency of photoexcited electron–holes. The photodetectors with all broadband response, high photoconductive gain, high response speed, and high detectivity is arduous challenge to realize using one photo-active material. Building of photodetectors composed of two or more light absorber materials of different band gaps was an efficient route to realize high performance light detection. The application of a thin sensitizing layer atop the TMDCs has proven to be a viable route to improve the photodetection performance due to the efficient charge separation at the interface, and fast charge transfer process due to the high carrier mobility. In this article, we review the progress made toward hybrid photodetector based on TMDCs with various sensitizers from metal to large band-gap semiconductor in architectures from zero-dimensional quantum dot to two-dimensional crystal.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Winston V. Schoenfeld

References

REFERENCES

Xue, Y., Zhang, Y., Liu, Y., Liu, H., Song, J., Sophia, J., Liu, J., Xu, Z., Xu, Q., Wang, Z., Zheng, J., Liu, Y., Li, S., and Bao, Q.: Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 10, 573 (2016).Google Scholar
Cheng, L., Liu, J.J., Gu, X., Gong, H., Shi, X., Liu, T., Wang, C., Wang, X.Y., Liu, G., Xing, H.Y., Bu, W.B., Sun, B.Q., and Liu, Z.: PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 26, 1886 (2014).Google Scholar
Yu, F.F., Liu, Q.W., Gan, X., Hu, M.X., Zhang, T.Y., Li, C., Kang, F.Y., Terrones, M., and Lv, R.T.: Ultrasensitive pressure detection of few-layer MoS2 . Adv. Mater. 29, 1603266 (2017).Google Scholar
Butun, S., Palacios, E., Cain, J.D., Liu, Z.Z., Dravid, V.P., and Aydin, K.: Quantifying plasmon-enhanced light absorption in monolayer WS2 films. ACS Appl. Mater. Interfaces 9, 15044 (2017).Google Scholar
Saran, R. and Curry, R.J.: Lead sulphide nanocrystal photodetector technologies. Nat. Photonics 10, 81 (2016).CrossRefGoogle Scholar
Mehew, J.D., Unal, S., Torres Alonso, E., Jones, G.F., Fadhil Ramadhan, S., Craciun, M.F., and Russo, S.: Fast and highly sensitive ionic-polymer-gated WS2-graphene photodetectors. Adv. Mater. 29, 1700222 (2017).Google Scholar
Buscema, M., Groenendijk, D.J., Blanter, S.I., Steele, G.A., van der Zant, H.S., and Castellanos-Gomez, A.: Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347 (2014).Google Scholar
Mueller, T., Xia, F.N.A., and Avouris, P.: Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297 (2010).Google Scholar
Jabbarzadeh, F., Siahsar, M., Dolatyari, M., Rostami, G., and Rostami, A.: Modification of graphene oxide for applying as mid-infrared photodetector. Appl. Phys. B: Lasers Opt. 120, 637 (2015).Google Scholar
Knap, W., Deng, Y., Rumyantsev, S., and Shur, M.S.: Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors. Appl. Phys. Lett. 81, 4637 (2002).CrossRefGoogle Scholar
Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., and Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351 (2008).CrossRefGoogle Scholar
Drieschner, S., Weber, M., Wohlketzetter, J., Vieten, J., Makrygiannis, E., Blaschke, B.M., Morandi, V., Colombo, L., Bonaccorso, F., and Garrido, J.A.: High surface area graphene foams by chemical vapor deposition. 2D Mater. 3, 10 (2016).Google Scholar
Li, J.H., Niu, L.Y., Zheng, Z.J., and Yan, F.: Photosensitive graphene transistors. Adv. Mater. 26, 5239 (2014).Google Scholar
Mortazavi, B.: Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon 118, 25 (2017).Google Scholar
Wang, L., Williams, C.M., Boutilier, M.S.H., Kidambi, P.R., and Karnik, R.: Single-layer graphene membranes withstand ultrahigh applied pressure. Nano Lett. 17, 3081 (2017).Google Scholar
Koppens, F.H., Mueller, T., Avouris, P., Ferrari, A.C., Vitiello, M.S., and Polini, M.: Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780 (2014).Google Scholar
Yu, W.Z., Li, S.J., Zhang, Y.P., Ma, W.L., Sun, T., Yuan, J., Fu, K., and Bao, Q.L.: Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 13, 1700268 (2017).Google Scholar
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., and Kis, A.: Ultrasensitive photodetectors based on monolayer MoS2 . Nat. Nanotechnol. 8, 497 (2013).Google Scholar
Cui, Y., Xin, R., Yu, Z., Pan, Y., Ong, Z.Y., Wei, X., Wang, J., Nan, H., Ni, Z., Wu, Y., Chen, T., Shi, Y., Wang, B., Zhang, G., Zhang, Y.W., and Wang, X.: High-performance monolayer WS2 field-effect transistors on high-kappa dielectrics. Adv. Mater. 27, 5230 (2015).Google Scholar
Ahn, J.H., Lee, M.J., Heo, H., Sung, J.H., Kim, K., Hwang, H., and Jo, M.H.: Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett. 15, 3703 (2015).CrossRefGoogle ScholarPubMed
Yang, Z., Jie, W., Mak, C.H., Lin, S., Lin, H., Yang, X., Yan, F., Lau, S.P., and Hao, J.: Wafer-scale synthesis of high-quality semiconducting two-dimensional layered InSe with broadband photoresponse. ACS Nano 11, 4225 (2017).Google Scholar
Cao, W., Liu, W., and Banerjee, K.: Prospects of ultra-thin nanowire gated 2D-FETs for next-generation CMOS technology. In Electron Devices Meeting (IEDM), 2016 IEEE International, (IEEE, 2016); p. 14.7.1. DOI: 10.1109/IEDM.2016.7838419.Google Scholar
Lee, H.S., Shin, J.M., Jeon, P.J., Lee, J., Kim, J.S., Hwang, H.C., Park, E., Yoon, W., Ju, S.Y., and Im, S.: Few-layer MoS2-organic thin-film hybrid complementary inverter pixel fabricated on a glass substrate. Small 11, 2132 (2015).Google Scholar
Island, J.O., Kuc, A., Diependaal, E.H., Bratschitsch, R., van der Zant, H.S.J., Heine, T., and Castellanos-Gomez, A.: Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain. Nanoscale 8, 2589 (2016).Google Scholar
Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).Google Scholar
Kagan, C.R., Lifshitz, E., Sargent, E.H., and Talapin, D.V.: Building devices from colloidal quantum dots. Science 353, 885 (2016).Google Scholar
Lan, C.Y., Li, C., Wang, S., Yin, Y., Guo, H.Y., Liu, N.H., and Liu, Y.: ZnO–WS2 heterostructures for enhanced ultra-violet photodetectors. RSC Adv. 6, 67520 (2016).Google Scholar
Rauch, T., Böberl, M., Tedde, S.F., Fürst, J., Kovalenko, M.V., Hesser, G., Lemmer, U., Heiss, W., and Hayden, O.: Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat. Photonics 3, 332 (2009).Google Scholar
Yu, Y., Zhang, Y.T., Song, X.X., Zhang, H.T., Cao, M.X., Che, Y.L., Dai, H.T., Yang, J.B., Zhang, H., and Yao, J.Q.: PbS-decorated WS2 phototransistors with fast response. ACS Photonics 4, 950 (2017).Google Scholar
Kufer, D., Nikitskiy, I., Lasanta, T., Navickaite, G., Koppens, F.H., and Konstantatos, G.: Hybrid 2D–0D MoS2–PbS quantum dot photodetectors. Adv. Mater. 27, 176 (2015).Google Scholar
Jia, Z.Y., Xiang, J.Y., Wen, F.S., Yang, R.L., Hao, C.X., and Liu, Z.Y.: Enhanced photoresponse of SnSe-nanocrystals-decorated WS2 monolayer phototransistor. ACS Appl. Mater. Interfaces 8, 4781 (2016).Google Scholar
Xu, Z.J., Lin, S.S., Li, X.Q., Zhang, S.J., Wu, Z.Q., Xu, W.L., Lu, Y.H., and Xu, S.: Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity. Nano Energy 23, 89 (2016).CrossRefGoogle Scholar
Jia, Z., Li, S., Xiang, J., Wen, F., Bao, X., Feng, S., Yang, R., and Liu, Z.: Highly sensitive and fast monolayer WS2 phototransistors realized by SnS nanosheet decoration. Nanoscale 9, 1916 (2017).Google Scholar
Gutiérrez, H.R., Perea-López, N., Elías, A.L., Berkdemir, A., Wang, B., Lv, R., López-Urías, F., Crespi, V.H., Terrones, H., and Terrones, M.: Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 3447 (2013).Google Scholar
Frey, G.L., Tenne, R., Matthews, M.J., Dresselhaus, M.S., and Dresselhaus, G.: Optical properties of MS2 (M = Mo, W) inorganic fullerenelike and nanotube material optical absorption and resonance Raman measurements. J. Mater. Res. 13, 2412 (2011).Google Scholar
Xu, X.D., Yao, W., Xiao, D., and Heinz, T.F.: Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343 (2014).Google Scholar
Wang, X., Gong, Y., Shi, G., Chow, W.L., Keyshar, K., Ye, G., Vajtai, R., Lou, J., Liu, Z., and Ringe, E.: Chemical vapor deposition growth of crystalline monolayer MoSe2 . ACS Nano 8, 5125 (2014).Google Scholar
Hu, C., Dong, D.D., Yang, X.K., Qiao, K.K., Yang, D., Deng, H., Yuan, S.J., Khan, J., Lan, Y., Song, H.S., and Tang, J.: Synergistic effect of hybrid PbS quantum dots/2d-WSe2 toward high performance and broadband phototransistors. Adv. Funct. Mater. 27, 1603605 (2017).CrossRefGoogle Scholar
Zhao, W.J., Ghorannevis, Z., Chu, L.Q., Toh, M.L., Kloc, C., Tan, P-H., and Eda, G.: Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791 (2013).CrossRefGoogle ScholarPubMed
Li, Y., Chernikov, A., Zhang, X., Rigosi, A., Hill, H.M., van der Zande, A.M., Chenet, D.A., Shih, E-M., Hone, J., and Heinz, T.F.: Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2 . Phys. Rev. B 90, 205422 (2014).Google Scholar
Bernardi, M., Palummo, M., and Grossman, J.C.: Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664 (2013).Google Scholar
Chernikov, A., Berkelbach, T.C., Hill, H.M., Rigosi, A., Li, Y., Aslan, O.B., Reichman, D.R., Hybertsen, M.S., and Heinz, T.F.: Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113, 076802 (2014).Google Scholar
Bromley, A.R., Knights, J.C., and Liang, W.Y.: Transmission spectra of some transition metal dichalcogenides. II. Group VIA: Trigonal prismatic coordination. J. Phys. C: Solid State Phys. 5, 3540 (1972).Google Scholar
Yang, F., Wilkinson, M., Austin, E.J., and O’Donnell, K.P.: Origin of the stokes shift: A geometrical model of exciton spectra in 2D semiconductors. Phys. Rev. Lett. 70, 323 (1993).Google Scholar
Ramasubramaniam, A.: Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012).Google Scholar
Bromley, R.A., Murray, R.B., and Yoffe, A.D.: The band structures of some transition metal dichalcogenides. III. Group VIA: Trigonal prism materials. J. Phys. C: Solid State Phys. 5, 759 (1972).Google Scholar
He, Z.Y., Sheng, Y.W., Rong, Y.M., Lee, G-D., Li, J., and Warner, J.H.: Layer-dependent modulation of tungsten disulfide photoluminescence by lateral electric fields. ACS Nano 9, 2740 (2015).Google Scholar
Kim, H-C., Kim, H., Lee, J-U., Lee, H-B., Choi, D-H., Lee, J-H., Lee, W.H., Jhang, S.H., Park, B.H., Cheong, H., Lee, S-W., and Chung, H-J.: Engineering optical and electronic properties of WS2 by varying the number of layers. ACS Nano 9, 6854 (2015).Google Scholar
Wang, Y.L., Cong, C.X., Yang, W.H., Shang, J.Z., Peimyoo, N.H., Chen, Y., Kang, J.Y., Wang, J.P., Huang, W., and Yu, T.: Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2 . Nano Res. 8, 2562 (2015).Google Scholar
Rafael, R., Andrés, C-G., Emmanuele, C., and Francisco, G.: Strain engineering in semiconducting two-dimensional crystals. J. Phys.: Condens. Matter 27, 313201 (2015).Google Scholar
Dhakal, K.P., Roy, S., Jang, H., Chen, X., Yun, W.S., Kim, H., Lee, J., Kim, J., and Ahn, J-H.: Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides. Chem. Mater. 29, 5124 (2017).Google Scholar
He, K., Poole, C., Mak, K.F., and Shan, J.: Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2 . Nano Lett. 13, 2931 (2013).Google Scholar
Desai, S.B., Seol, G., Kang, J.S., Fang, H., Battaglia, C., Kapadia, R., Ager, J.W., Guo, J., and Javey, A.: Strain-induced indirect to direct bandgap transition in multilayer WSe2 . Nano Lett. 14, 4592 (2014).Google Scholar
Conley, H.J., Wang, B., Ziegler, J.I., Haglund, R.F., Pantelides, S.T., and Bolotin, K.I.: Bandgap engineering of strained monolayer and bilayer MoS2 . Nano Lett. 13, 3626 (2013).CrossRefGoogle ScholarPubMed
Wei, X., Yan, F.G., Shen, C., Lv, Q.S., and Wang, K.Y.: Photodetectors based on junctions of two-dimensional transition metal dichalcogenides. Chin. Phys. B 26, 038504 (2017).Google Scholar
Molina-Sánchez, A. and Wirtz, L.: Phonons in single-layer and few-layer MoS2 and WS2 . Phys. Rev. B 84, 155413 (2011).Google Scholar
Chen, K-T. and Chang, S-T.: How high can the mobility of monolayer tungsten disulfide be? Vacuum 140, 172 (2017).Google Scholar
Huo, N.J., Kang, J., Wei, Z.M., Li, S-S., Li, J.B., and Wei, S-H.: Novel and enhanced optoelectronic performances of multilayer MoS2–WS2 heterostructure transistors. Adv. Funct. Mater. 24, 7025 (2014).Google Scholar
Ovchinnikov, D., Allain, A., Huang, Y-S., Dumcenco, D., and Kis, A.: Electrical transport properties of single-layer WS2 . ACS Nano 8, 8174 (2014).Google Scholar
Wang, F., Wang, Z., Xu, K., Wang, F., Wang, Q., Huang, Y., Yin, L., and He, J.: Tunable GaTe–MoS2 van der Waals p–n junctions with novel optoelectronic performance. Nano Lett. 15, 7558 (2015).Google Scholar
Iqbal, M.W., Iqbal, M.Z., Khan, M.F., Shehzad, M.A., Seo, Y., Park, J.H., Hwang, C., and Eom, J.: High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 5, 10699 (2015).Google Scholar
Kim, C., Moon, I., Lee, D., Choi, M.S., Ahmed, F., Nam, S., Cho, Y., Shin, H-J., Park, S., and Yoo, W.J.: Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 11, 1588 (2017).CrossRefGoogle ScholarPubMed
Xu, Y., Cheng, C., Du, S.C., Yang, J.Y., Yu, B., Luo, J., Yin, W.Y., Li, E.P., Dong, S.R., Ye, P.D., and Duan, X.F.: Contacts between two- and three-dimensional materials: Ohmic, Schottky, and p–n heterojunctions. ACS Nano 10, 4895 (2016).CrossRefGoogle ScholarPubMed
Choi, M.S., Qu, D., Lee, D., Liu, X., Watanabe, K., Taniguchi, T., and Yoo, W.J.: Lateral MoS2 p–n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano 8, 9332 (2014).Google Scholar
Luo, W.G., Cao, Y.F., Cai, P.G., Feng, Q., Yan, F.G., Yan, T.F., Zhang, X.H., and Wang, K.Y.: Gate tuning of high-performance InSe-based photodetectors using graphene electrodes. Adv. Opt. Mater. 3, 1418 (2015).Google Scholar
Wei, X., Yan, F.G., Lv, Q.S., Shen, C., and Wang, K.Y.: Fast gate-tunable photodetection in the graphene sandwiched WSe2/GaSe heterojunctions. Nanoscale 9, 8388 (2017).Google Scholar
Buscema, M., Island, J.O., Groenendijk, D.J., Blanter, S.I., Steele, G.A., van der Zant, H.S.J., and Castenllanos-Gomez, A.: Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44, 3691 (2015).CrossRefGoogle ScholarPubMed
Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., and Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372 (2014).CrossRefGoogle ScholarPubMed
Yang, S., Tongay, S., Li, Y., Yue, Q., Xia, J.B., Li, S.S., Li, J., and Wei, S.H.: Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 6, 7226 (2014).Google Scholar
Zhao, S., Wang, H., Zhou, Y., Liao, L., Jiang, Y., Yang, X., Chen, G., Lin, M., Wang, Y., Peng, H., and Liu, Z.: Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 8, 288 (2015).Google Scholar
Feng, W., Wu, J-B., Li, X., Zheng, W., Zhou, X., Xiao, K., Cao, W., Yang, B., Idrobo, J-C., Basile, L., Tian, W., Tan, P., and Hu, P.: Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. J. Mater. Chem. C 3, 7022 (2015).Google Scholar
Zhitomirsky, D., Furukawa, M., Tang, J., Stadler, P., Hoogland, S., Voznyy, O., Liu, H., and Sargent, E.H.: N-type colloidal-quantum-dot solids for photovoltaics. Adv. Mater. 24, 6181 (2012).Google Scholar
Pradhan, N.R., Rhodes, D., Feng, S., Xin, Y., Memaran, S., Moon, B-H., Terrones, H., Terrones, M., and Balicas, L.: Field-effect transistors based on few-layered α-MoTe2 . ACS Nano 8, 5911 (2014).Google Scholar
Kanazawa, T., Amemiya, T., Ishikawa, A., Upadhyaya, V., Tsuruta, K., Tanaka, T., and Miyamoto, Y.: Few-layer HfS2 transistors. Sci. Rep. 6, 22277 (2016).Google Scholar
Yin, L., Xu, K., Wen, Y., Wang, Z., Huang, Y., Wang, F., Shifa, T.A., Cheng, R., Ma, H., and He, J.: Ultrafast and ultrasensitive phototransistors based on few-layered HfSe2 . Appl. Phys. Lett. 109, 213105 (2016).Google Scholar
Shao, Y., Xiao, Z., Bi, C., Yuan, Y., and Huang, J.: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).Google Scholar
Luther, J., Song, Q., Hughes, B.K., Perkins, C.L., and Nozik, A.J.: Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. J. Am. Chem. Soc. 130, 5974 (2008).Google Scholar
Su, Y., Ebrish, M.A., Olson, E.J., and Koester, S.J.: SnSe2 field-effect transistors with high drive current. Appl. Phys. Lett. 103, 263104 (2013).Google Scholar
Huang, J., Pu, J., Hsu, C., Chiu, M., Juang, Z., Chang, Y., Chang, W., Iwasa, Y., Takenobu, T., and Li, L.J.: Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8, 923 (2014).Google Scholar
Zhang, J., Yu, H., Chen, W., Tian, X., Liu, D., Cheng, M., Xie, G., Yang, W., Yang, R., and Bai, X.D.: Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano 8, 6024 (2014).Google Scholar
Ovchinnikov, D., Allain, A., Huang, Y., Dumcenco, D., and Kis, A.: Electrical transport properties of single-layer WS2 . ACS Nano 8, 140728153134003 (2014).Google Scholar
Zhang, M., Zhu, Y., Wang, X., Feng, Q., Qiao, S., Wen, W., Chen, Y., Cui, M., Zhang, J., Cai, C., and Xie, L.: Controlled synthesis of ZrS2 monolayer and few layers on hexagonal boron nitride. J. Am. Chem. Soc. 137, 7051 (2015).Google Scholar
Wei, H., DeSantis, D., Wei, W., Deng, Y., Guo, D., Savenije, T.J., Cao, L., and Huang, J.: Dopant compensation in alloyed CH3NH3PbBr3−x Cl x perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16, 826 (2017).Google Scholar
Balendhran, S., Deng, J., Ou, J.Z., Walia, S., Scott, J., Tang, J., Wang, K.L., Field, M.R., Russo, S., Zhuiykov, S., Strano, M.S., Medhekar, N., Sriram, S., Bhaskaran, M., and Kalantar-zadeh, K.: Enhanced charge carrier mobility in two-dimensional high dielectric molybdenum oxide. Adv. Mater. 25, 109 (2013).Google Scholar
Zhou, J., Zeng, Q., Lv, D., Sun, L., Niu, L., Fu, W., Liu, F., Shen, Z., Jin, C., and Liu, Z.: Controlled synthesis of high-quality monolayered alpha-In2Se3 via physical vapor deposition. Nano Lett. 15, 6400 (2015).Google Scholar
Xu, K., Wang, Z., Wang, F., Huang, Y., Wang, F., Yin, L., Jiang, C., and He, J.: Ultrasensitive phototransistors based on few-layered HfS2 . Adv. Mater. 27, 7881 (2015).Google Scholar
Li, D., Wang, X., Zhang, Q., Zou, L., Xu, X., and Zhang, Z.: Nonvolatile floating-gate memories based on stacked black phosphorus-boron nitride-MoS2 heterostructures. Adv. Funct. Mater. 25, 7360 (2015).Google Scholar
Wang, C., Yang, S., Xiong, W., Xia, C., Cai, H., Chen, B., Wang, X., Zhang, X., Wei, Z., and Tongay, S.: Gate-tunable diode-like current rectification and ambipolar transport in multilayer van der Waals ReSe2/WS2 p–n heterojunctions. Phys. Chem. Chem. Phys. 18, 27750 (2016).Google Scholar
Deb, A.K. and Kumar, V.: Bandgap engineering in semiconducting one to few layers of SnS and SnSe. Phys. Status Solidi B 254, 1600379 (2017).Google Scholar
Guo, Y. and Robertson, J.: Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures. Appl. Phys. Lett. 108, 233104 (2016).Google Scholar
Lang, O., Klein, A., Pettenkofer, C., Jaegermann, W., and Chevy, A.: Band lineup of lattice mismatched InSe/GaSe quantum well structures prepared by van der Waals epitaxy: Absence of interfacial dipoles. J. Appl. Phys. 80, 3817 (1996).CrossRefGoogle Scholar
Lin, J., Dong, Y., Zhang, Q., Hu, D., Li, N., Wang, L., Liu, Y., and Wu, T.: Interrupted chalcogenide-based zeolite-analogue semiconductor: Atomically precise doping for tunable electro-/photoelectrochemical properties. Angew. Chem. 54, 5103 (2015).Google Scholar
Chuang, C.H., Brown, P.R., Bulovic, V., and Bawendi, M.G.: Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 13, 796 (2014).Google Scholar
Jung, H.S. and Park, N.G.: Perovskite solar cells: From materials to devices. Small 11, 10 (2015).Google Scholar
Kokal, R.K., Kumar, P.N., Deepa, M., and Srivastava, A.K.: Lead selenide quantum dots and carbon dots amplify solar conversion capability of a TiO2/CdS photoanode. J. Mater. Chem. 3, 20715 (2015).Google Scholar
Liu, H., Xu, B., Liu, J.M., Yin, J., Miao, F., Duan, C.G., and Wan, X.G.: Highly efficient and ultrastable visible-light photocatalytic water splitting over ReS2 . Phys. Chem. Chem. Phys. 18, 14222 (2016).Google Scholar
Butler, K.T., Crespo-Otero, R., Buckeridge, J., Scanlon, D.O., Bovill, E., Lidzey, D., and Walsh, A.: Band energy control of molybdenum oxide by surface hydration. Appl. Phys. Lett. 107, 231605 (2015).Google Scholar
Kufer, D., Lasanta, T., Bernechea, M., Koppens, F.H.L., and Konstantatos, G.: Interface engineering in hybrid quantum dot-2D phototransistors. ACS Photonics 3, 1324 (2016).Google Scholar
Macdonald, D. and Cuevas, A.: Trapping of minority carriers in multicrystalline silicon. Appl. Phys. Lett. 74, 1710 (1999).Google Scholar
Furchi, M.M., Polyushkin, D.K., Pospischil, A., and Mueller, T.: Mechanisms of photoconductivity in atomically thin MoS2 . Nano Lett. 14, 6165 (2014).Google Scholar
Molina-Mendoza, A.J., Vaquero-Garzon, L., Leret, S., de Juan-Fernandez, L., Perez, E.M., and Castellanos-Gomez, A.: Engineering the optoelectronic properties of MoS2 photodetectors through reversible noncovalent functionalization. Chem. Commun. 52, 14365 (2016).Google Scholar
Hai, H., Jianlu, W., Weida, H., Lei, L., Peng, W., Xudong, W., Fan, G., Yan, C., Guangjian, W., Wenjin, L., Hong, S., Tie, L., Jinglan, S., Xiangjian, M., Xiaoshuang, C., and Junhao, C.: Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology 27, 445201 (2016).Google Scholar
Miao, J., Song, B., Li, Q., Cai, L., Zhang, S., Hu, W., Dong, L., and Wang, C.: Photothermal effect induced negative photoconductivity and high responsivity in flexible black phosphorus transistors. ACS Nano 11, 6048 (2017).CrossRefGoogle ScholarPubMed
Choi, W., Cho, M.Y., Konar, A., Lee, J.H., Cha, G-B., Hong, S.C., Kim, S., Kim, J., Jena, D., Joo, J., and Kim, S.: High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 24, 5832 (2012).Google Scholar
Perea-López, N., Lin, Z., Pradhan, N.R., Iñiguez-Rábago, A., Laura Elías, A., McCreary, A., Lou, J., Ajayan, P.M., Terrones, H., Balicas, L., and Terrones, M.: CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Mater. 1, 011004 (2014).Google Scholar
Chang, Y-H., Zhang, W.J., Zhu, Y.H., Han, Y., Pu, J., Chang, J-K., Hsu, W-T., Huang, J-K., Hsu, C-L., and Chiu, M-H.: Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 8, 8582 (2014).Google Scholar
Xia, F.N., Wang, H., Xiao, D., Dubey, M., and Ramasubramaniam, A.: Two-dimensional material nanophotonics. Nat. Photonics 8, 899 (2014).Google Scholar
Wen, Y., Yin, L., He, P., Wang, Z., Zhang, X., Wang, Q., Shifa, T.A., Xu, K., Wang, F., Zhan, X., Wang, F., Jiang, C., and He, J.: Integrated high-performance infrared phototransistor arrays composed of nonlayered PbS–MoS2 heterostructures with edge contacts. Nano Lett. 16, 6437 (2016).Google Scholar
Yin, Z.Y., Li, H., Li, H., Jiang, L., Shi, Y.M., Sun, Y.H., Lu, G., Zhang, Q., Chen, X.D., and Zhang, H.: Single-layer MoS2 phototransistors. ACS Nano 6, 74 (2012).Google Scholar
Chen, C., Qiao, H., Lin, S., Man Luk, C., Liu, Y., Xu, Z., Song, J., Xue, Y., Li, D., Yuan, J., Yu, W., Pan, C., Ping Lau, S., and Bao, Q.: Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Sci. Rep. 5, 11830 (2015).Google Scholar
Huo, N., Yang, S., Wei, Z., Li, S.S., Xia, J.B., and Li, J.: Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 4, 5209 (2014).Google Scholar
Zhang, C.Y., Wang, S., Yang, L.J., Liu, Y., Xu, T.T., Ning, Z.Y., Zak, A., Zhang, Z.Y., Tenne, R., and Chen, Q.: High-performance photodetectors for visible and near-infrared lights based on individual WS2 nanotubes. Appl. Phys. Lett. 100, 243101 (2012).Google Scholar
Yao, J., Zheng, Z., Shao, J., and Yang, G.: Promoting photosensitivity and detectivity of the Bi/Si heterojunction photodetector by inserting a WS2 layer. ACS Appl. Mater. Interfaces 7, 26701 (2015).Google Scholar
Konstantatos, G., Howard, I., Fischer, A., Hoogland, S., Clifford, J., Klem, E., Levina, L., and Sargent, E.H.: Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180 (2006).Google Scholar
Boulesbaa, A., Wang, K., Mahjouri-Samani, M., Tian, M., Puretzky, A.A., Ivanov, I., Rouleau, C.M., Xiao, K., Sumpter, B.G., and Geohegan, D.B.: Ultrafast charge transfer and hybrid exciton formation in 2D/0D heterostructures. J. Am. Chem. Soc. 138, 14713 (2016).Google Scholar
Schornbaum, J., Winter, B., Schießl, S.P., Gannott, F., Katsukis, G., Guldi, D.M., Spiecker, E., and Zaumseil, J.: Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 24, 5798 (2014).Google Scholar
Jia, Z.Y., Xiang, J.Y., Mu, C.P., Wen, F.S., Yang, R.L., Hao, C.X., and Liu, Z.Y.: Improved photoresponse and stable photoswitching of tungsten disulfide single-layer phototransistor decorated with black phosphorus nanosheets. J. Mater. Sci. 52, 11506 (2017).Google Scholar
Zheng, W., Feng, W., Zhang, X., Chen, X.S., Liu, G.B., Qiu, Y.F., Hasan, T., Tan, P.H., and Hu, P.A.: Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures. Adv. Funct. Mater. 26, 2648 (2016).Google Scholar
Zheng, W., Feng, W., Zhang, X., Chen, X., Liu, G., Qiu, Y., Hasan, T., Tan, P., and Hu, P.A.: Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures. Adv. Funct. Mater. 26, 2648 (2016).Google Scholar
Nasilowski, M., Mahler, B., Lhuillier, E., Ithurria, S., and Dubertret, B.: Two-dimensional colloidal nanocrystals. Chem. Rev. 116, 10934 (2016).Google Scholar
Xing, Z., Nan, Z., Chao, L., Hongyue, S., Qi, Z., Xiaozong, H., Lin, G., Huiqiao, L., Jingtao, L., Jun, L., Jie, X., and Tianyou, Z.: Vertical heterostructures based on SnSe2/MoS2 for high performance photodetectors. 2D Mater. 4, 025048 (2017).Google Scholar
Deng, Y.X., Luo, Z., Conrad, N.J., Liu, H., Gong, Y.J., Najmaei, S., Ajayan, P.M., Lou, J., Xu, X.F., and Ye, P.D.: Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8, 8292 (2014).Google Scholar
Ai, R., Guan, X., Li, J., Yao, K.K., Chen, P., Zhang, Z.W., Duan, X.D., and Duan, X.F.: Growth of single-crystalline cadmium iodide nanoplates, CdI2/MoS2 (WS2, WSe2) van der Waals heterostructures, and patterned arrays. ACS Nano 11, 3413 (2017).Google Scholar
Yang, S., Wang, C., Ataca, C., Li, Y., Chen, H., Cai, H., Suslu, A., Grossman, J.C., Jiang, C., Liu, Q., and Tongay, S.: Self-driven photodetector and ambipolar transistor in atomically thin GaTe–MoS2 p–n vdW heterostructure. ACS Appl. Mater. Interfaces 8, 2533 (2016).Google Scholar
Lee, C-H., Lee, G-H., van der Zande, A.M., Chen, W., Li, Y., Han, M., Cui, X., Arefe, G., Nuckolls, C., Heinz, T.F., Guo, J., Hone, J., and Kim, P.: Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676 (2014).Google Scholar
Zhang, J., Wang, J.H., Chen, P., Sun, Y., Wu, S., Jia, Z.J., Lu, X.B., Yu, H., Chen, W., Zhu, J.Q., Xie, G.B., Yang, R., Shi, D.X., Xu, X.L., Xiang, J.Y., Liu, K.H., and Zhang, G.Y.: Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater. 28, 1950 (2016).Google Scholar
Hong, X.P., Kim, J., Shi, S-F., Zhang, Y., Jin, C.H., Sun, Y.H., Tongay, S., Wu, J.Q., Zhang, Y.F., and Wang, F.: Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682 (2014).Google Scholar
Komsa, H-P. and Krasheninnikov, A.V.: Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B 88, 085318 (2013).Google Scholar
Cheng, R., Li, D.H., Zhou, H.L., Wang, C., Yin, A.X., Jiang, S., Liu, Y., Chen, Y., Huang, Y., and Duan, X.F.: Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590 (2014).Google Scholar
Britnell, L., Ribeiro, R.M., Eckmann, A., Jalil, R., Belle, B.D., Mishchenko, A., Kim, Y.J., Gorbachev, R.V., Georgiou, T., and Morozov, S.V.: Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311 (2013).Google Scholar
Ratha, S., Simbeck, A.J., Late, D.J., Nayak, S.K., and Rout, C.S.: Negative infrared photocurrent response in layered WS2/reduced graphene oxide hybrids. Appl. Phys. Lett. 105, 243502 (2014).Google Scholar
Jin, Z., He, D., Zhou, Q., Mao, P., Ding, L., and Wang, J.: Bilayer heterostructured PThTPTI/WS2 photodetectors with high thermal stability in ambient environment. ACS Appl. Mater. Interfaces 8, 33043 (2016).Google Scholar
Lan, C., Li, C., Wang, S., He, T., Jiao, T., Wei, D., Jing, W., Li, L., and Liu, Y.: Zener tunneling and photoresponse of a WS2/Si van der Waals heterojunction. ACS Appl. Mater. Interfaces 8, 18375 (2016).CrossRefGoogle ScholarPubMed
Duan, X., Wang, C., Shaw, J.C., Cheng, R., Chen, Y., Li, H., Wu, X., Tang, Y., Zhang, Q., Pan, A., Jiang, J., Yu, R., Huang, Y., and Duan, X.: Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024 (2014).Google Scholar
Zhang, W., Chuu, C.P., Huang, J.K., Chen, C.H., Tsai, M.L., Chang, Y.H., Liang, C.T., Chen, Y.Z., Chueh, Y.L., He, J.H., Chou, M.Y., and Li, L.J.: Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 4, 3826 (2014).Google Scholar
Xu, H., Wu, J., Feng, Q., Mao, N., Wang, C., and Zhang, J.: High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. Small 10, 2300 (2014).Google Scholar
Qiao, H., Yuan, J., Xu, Z.Q., Chen, C.Y., Lin, S.H., Wang, Y.S., Song, J.C., Liu, Y., Khan, Q., Hoh, H.Y., Pan, C-X., Li, S.J., and Bao, Q.L.: Broadband photodetectors based on graphene–Bi2Te3 heterostructure. ACS Nano 9, 1886 (2015).Google Scholar
Ye, L., Li, H., Chen, Z.F., and Xu, J.B.: Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 3, 692 (2016).CrossRefGoogle Scholar
Ma, C., Shi, Y., Hu, W., Chiu, M.H., Liu, Z., Bera, A., Li, F., Wang, H., Li, L.J., and Wu, T.: Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater. 28, 3683 (2016).Google Scholar
Zhang, K., Fang, X., Wang, Y., Wan, Y., Song, Q., Zhai, W., Li, Y., Ran, G., Ye, Y., and Dai, L.: Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der Waals heterostructure. ACS Appl. Mater. Interfaces 9, 5392 (2017).CrossRefGoogle ScholarPubMed
Yu, W.J., Liu, Y., Zhou, H., Yin, A., Li, Z., Huang, Y., and Duan, X.: Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952 (2013).Google Scholar
Lee, C.H., Lee, G.H., van der Zande, A.M., Chen, W., Li, Y., Han, M., Cui, X., Arefe, G., Nuckolls, C., Heinz, T.F., Guo, J., Hone, J., and Kim, P.: Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676 (2014).Google Scholar
De Fazio, D., Goykhman, I., Yoon, D., Bruna, M., Eiden, A., Milana, S., Sassi, U., Barbone, M., Dumcenco, D., Marinov, K., Kis, A., and Ferrari, A.C.: High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 10, 8252 (2016).Google Scholar
Yao, J.D., Zheng, Z.Q., and Yang, G.W.: Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm. J. Mater. Chem. C 4, 7831 (2016).Google Scholar
Tan, H., Fan, Y., Zhou, Y., Chen, Q., Xu, W., and Warner, J.H.: Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes. ACS Nano 10, 7866 (2016).Google Scholar
Kyung-Ah, M., Janghwan, C., Kyeongjae, C., and Suklyun, H.: Ferromagnetic contact between Ni and MoX2 (X = S, Se, or Te) with fermi-level pinning. 2D Mater. 4, 024006 (2017).Google Scholar
Khalil, H.M., Khan, M.F., Eom, J., and Noh, H.: Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: Reduction in contact resistance. ACS Appl. Mater. Interfaces 7, 23589 (2015).Google Scholar
Iqbal, M.W., Iqbal, M.Z., Khan, M.F., Kamran, M.A., Majid, A., Alharbi, T., and Eom, J.: Tailoring the electrical and photo-electrical properties of a WS2 field effect transistor by selective n-type chemical doping. RSC Adv. 6, 24675 (2016).Google Scholar
Fang, H., Tosun, M., Seol, G., Chang, T.C., Takei, K., Guo, J., and Javey, A.: Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 13, 1991 (2013).Google Scholar
Kaushik, N., Karmakar, D., Nipane, A., Karande, S., and Lodha, S.: Interfacial n-doping using an ultrathin TiO2 layer for contact resistance reduction in MoS2 . ACS Appl. Mater. Interfaces 8, 256 (2016).Google Scholar
Yang, L., Majumdar, K., Liu, H., Du, Y., Wu, H., Hatzistergos, M., Hung, P.Y., Tieckelmann, R., Tsai, W., Hobbs, C., and Ye, P.D.: Chloride molecular doping technique on 2D materials: WS2 and MoS2 . Nano Lett. 14, 6275 (2014).CrossRefGoogle Scholar
Iqbal, M.W., Iqbal, M.Z., Khan, M.F., Shehzad, M.A., Seo, Y., and Eom, J.: Deep-ultraviolet-light-driven reversible doping of WS2 field-effect transistors. Nanoscale 7, 747 (2015).Google Scholar
Shih, C-J., Wang, Q.H., Son, Y., Jin, Z., Blankschtein, D., and Strano, M.S.: Tuning on–off current ratio and field-effect mobility in a MoS2–graphene heterostructure via Schottky barrier modulation. ACS Nano 8, 5790 (2014).Google Scholar