Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T14:04:52.692Z Has data issue: false hasContentIssue false

Photo-bias instability of metal oxide thin film transistors for advanced active matrix displays

Published online by Cambridge University Press:  06 August 2013

Jae Kyeong Jeong*
Affiliation:
Department of Materials Science and Engineering, Inha University, Nam-Gu, Incheon 402-751, Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Metal oxide optoelectronics is an emerging field that exploits the intriguing properties of the ns orbital-derived isotropic band structure as a replacement for traditional silicon-based electronics in advanced active-matrix information displays. Although the device performance of metal oxide thin film transistors (TFTs) has been substantially improved, the device reliability against external light and gate bias stress remains a critical issue. This paper provides a literature review of light-induced gate bias stress instability in metal oxide TFTs and explain the importance of photo-bias instability in the applications of metal oxide TFTs to optoelectronic device. The rationale of threshold voltage (Vth) instability under the negative bias illumination stress (NBIS) condition is discussed in detail. The charge trapping/injection model, oxygen vacancy photoionization model, and ambient interaction model are described as plausible degradation mechanisms. Finally, the possible approaches to prevent NBIS-induced Vth instability are proposed based on an understanding of the NBIS instability.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Matsueda, Y.: Required characteristics of TFTs for next generation flat panel display backplanes. Digest of International Transistor Conference, Tokyo, Japan, January 28–29, 2010, p. 314.Google Scholar
Jackson, W.B. and Moyer, M.D.: Creation of near-interface defects in hydrogenated amorphous silicon-silicon nitride heterojunctions: The role of hydrogen. Phys. Rev. B 36, 62176220 (1987).CrossRefGoogle ScholarPubMed
Powell, M.J.: Charge trapping instabilities in amorphous silicon-silicon nitride thin-film transistors. Appl. Phys. Lett. 43, 597599 (1983).CrossRefGoogle Scholar
Jahinuzzaman, M., Sultana, A., Sakariya, K., Servati, P., and Nathan, A.: Threshold voltage instability of amorphous silicon thin-film transistors under constant current stress. Appl. Phys. Lett. 87, 023502 (2005).CrossRefGoogle Scholar
Theiss, S.D. and Wagner, S.: Amorphous silicon thin-film transistors on steel foil substrates. IEEE Electron Device Lett. 17, 578580 (1996).CrossRefGoogle Scholar
Serikawa, T. and Omata, F.: High-quality polycrystalline Si TFTs fabricated on stainless-steel foils by using sputtered Si films. IEEE Trans. Electron Devices 49, 820825 (2002).CrossRefGoogle Scholar
Jeong, J.K., Jin, D.U., Shin, H.S., Lee, H.J., Kim, M., Ahn, T.K., Lee, J., Mo, Y.G., and Kim, H.D.: Flexible full-color AMOLED on ultra-thin metal foil. IEEE Electron Device Lett. 28, 389391 (2007).CrossRefGoogle Scholar
Im, J.S., Kim, H.J., and Thompson, M.O.: Phase transformation mechanism involved in excimer laser crystallization of amorphous silicon films. Appl. Phys. Lett. 63, 19691971 (1993).CrossRefGoogle Scholar
Fortunato, E., Barquinha, P., and Martins, R.: Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 24, 29452986 (2012).CrossRefGoogle ScholarPubMed
Park, J.S., Maeng, S-J., Kim, H-S., and Park, J-S.: Review of recent development in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films 520, 16791693 (2012).CrossRefGoogle Scholar
Kwon, J.Y., Lee, D.J., and Kim, K.B.: Transparent amorphous oxide semiconductor thin film transistor. Electron. Mater. Lett. 7, 111 (2011).CrossRefGoogle Scholar
Kamiya, T., Nomura, K., and Hosono, H.: Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci. Technol. Adv. Mater. 11, 044305_1–23 (2010).CrossRefGoogle ScholarPubMed
Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488492 (2004).CrossRefGoogle ScholarPubMed
Hosono, H.: Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. J. Non-Cryst. Solids 352, 851858 (2006).CrossRefGoogle Scholar
Iwasaki, T., Itagaki, N., Den, T., Kumomi, H., Nomura, K., Kamiya, T., and Hosono, H.: Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in In-Ga-Zn-O system. Appl. Phys. Lett. 90, 242114_1–3 (2007).CrossRefGoogle Scholar
Jeong, J.K., Jeong, J.H., Yang, H.W., Park, J.S., Mo, Y.G., and Kim, H.D.: High performance thin film transistors with co-sputtered amorphous indium gallium zinc oxide channel. Appl. Phys. Lett. 91, 113505_1–3 (2007).CrossRefGoogle Scholar
Lee, H.N., Kyung, J., Sung, M.C., Kim, D.Y., Kang, S.K., Kim, S.J., Kim, C.N., Kim, H.G., and Kim, S.T.: Oxide TFT with multilayer gate insulator for backplane of AMOLED device. J. Soc. Inf. Disp. 16, 265272 (2008).CrossRefGoogle Scholar
Jeong, J.K., Jeong, J.H., Yang, H.W., Ahn, T.K., Kim, M., Kim, K.S., Gu, B.S., Chung, H.J., Park, J.S., Mo, Y.G., Kim, H.D., and Chung, H.K.: 12.1-in. WXGA AMOLED display driven by InGaZnO thin-film transistors. J. Soc. Inf. Disp. 17, 95100 (2009).CrossRefGoogle Scholar
Kim, M., Jeong, J.H., Lee, H.J., Ahn, T.K., Shin, H.S., Park, J.S., Jeong, J.K., Mo, Y.G., and Kim, H.D.: High mobility bottom gate InGaZnO thin-film transistors with SiOx etch stopper. Appl. Phys. Lett. 90, 212114_1–3 (2007).CrossRefGoogle Scholar
Sato, A., Abe, K., Hayashi, R., Kumomi, H., Nomura, K., Kamiya, T., Hirano, M., and Hosono, H.: Amorphous In-Ga-Zn-O coplanar homojunction thin-film transistor. Appl. Phys. Lett. 94, 133502_1–3 (2009).CrossRefGoogle Scholar
Morosawa, N., Ohshima, Y., Morooka, M., Arai, T., and Sasaoka, T.: A novel self-aligned top-gate oxide TFT for AM-OLED displays. SID Symposium Digest of Technical Papers 42, 479–482 (2011).CrossRefGoogle Scholar
Ito, M., Miyazaki, C., Ishizaki, M., Kon, M., Ikeda, N., Okubo, T., Matsubara, R., Hatta, K., Ugajin, Y., and Sekine, N.: Application of amorphous oxide TFT to electrophoretic display. J. Non-Cryst. Solids 354(19–25), 27772782 (2008).CrossRefGoogle Scholar
Lee, J.H., Kim, D.H., Yang, D.J., Hong, S.Y., Yoon, K.S., Hong, P.S., Jeong, C.O., Park, H.S., Kim, S.Y., Lim, S.K., and Kim, S.S.: World’s largest (15-inch) XGA AMLCD panel using IGZO TFT. SID International Symposium Digest Technical Papers 39, 625–628 (2008).CrossRefGoogle Scholar
Shin, J-H., Lee, J-S., Hwang, C-S., Park, S-H.K., Cheong, W-S., Ryu, M., Byun, C-W., Lee, J-I., and Chu, H.Y.: Light effects on the bias stability of transparent ZnO thin film transistors. ETRI J. 31, 6264 (2009).CrossRefGoogle Scholar
Jeong, J.K.: The status and perspectives of metal oxide thin film transistors for active matrix flexible displays. Semicond. Sci. Technol. 26, 034008_1–10 (2011).CrossRefGoogle Scholar
Cross, R.B.M. and De Souza, M.M.: Investigating the stability of zinc oxide thin film transistors. Appl. Phys. Lett. 89, 263513_1–3 (2006).CrossRefGoogle Scholar
Suresh, A. and Muth, J.F.: Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors. Appl. Phys. Lett. 92, 033502_1–3 (2008).CrossRefGoogle Scholar
Nomura, K., Kamiya, T., Yanagi, H., Ikenaga, E., Yang, K., Kobayashi, K., Hirano, M., and Hosono, H.: Subgap states in transparent amorphous oxide semiconductor, In-Ga-Zn-O, observed by bulk sensitive x-ray photoelectron spectroscopy. Appl. Phys. Lett. 92, 202117_1–3 (2008).CrossRefGoogle Scholar
Ghaffazadeh, K., Nathan, A., Roberson, J., Kim, S., Jeong, S., Kim, C., Chung, U-I., and Lee, J.H.: Instability in threshold voltage and subthreshold behavior in Hf-In-Zn-O thin film transistors induced by bias-and light-stress. Appl. Phys. Lett. 97, 113504_1–3 (2010).Google Scholar
Neamen, D.A.: Semiconductor Physics and Devices: Basic Principles, 3rd ed. (McGraw Hill, New York, 2003), Chap. 14.Google Scholar
Kim, S., Kim, S., Kim, C., Park, J., Song, I., Jeon, S., Ahn, S-E., Park, J-S., and Jeong, J.K.: The influence of visible light on gate bias instability of In-Ga-Zn-O thin film transistors. Solid-State Electron. 62, 7781 (2011).CrossRefGoogle Scholar
Chung, Y.J., Kim, J.H., Kim, U.K., Cho, D-Y., Jung, H.S., Jeong, J.K., and Hwang, C.S.. Direct observation of a hole current in amorphous oxide semiconductor under illumination. Electrochem. Solid-State Lett. 14, G35G37 (2011).CrossRefGoogle Scholar
Ji, K.H., Kim, J-I., Jung, H.Y., Park, S.Y., Choi, R., Kim, U.K., Hwang, C.S., Lee, D., Hwang, H., and Jeong, J.K.: Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors. Appl. Phys. Lett. 98, 103509_1–3 (2011).CrossRefGoogle Scholar
Ryu, B., Noh, H-K., Choi, E-A., and Chang, K.J.: O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors. Appl. Phys. Lett. 97, 022108_1–3 (2010).CrossRefGoogle Scholar
Yang, S., Cho, D-H., Ryu, M.K., Park, S-H.K., Hwang, C-S., Jang, J., and Jeong, J.K.: Improvement in the photon-induced bias stability of Al-Sn-Zn-In-O thin film transistors by adopting AlOx passivation layer. Appl. Phys. Lett. 96, 213511_1–3 (2010).CrossRefGoogle Scholar
Staebler, D.L. and Wronski, C.R.: Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon. J. Appl. Phys. 51, 32623268 (1980).CrossRefGoogle Scholar
Stutzmann, M., Jackson, W.B., and Tsai, C.C.: Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study. Phys. Rev. B 32, 2347 (1985).CrossRefGoogle ScholarPubMed
Kagan, C.R. and Andry, P.: Thin Film Transistors (Dekker, New York, 2003), Chap. 3, p. 104.CrossRefGoogle Scholar
Douglas, E.A., Scheurmann, A., Davies, R.P., Gila, B.P., Cho, H., Craciun, V., Lambers, E.S., Pearton, S.J., and Ren, F.: Measurement of SiO2/InZnGaO4 heterojunction band offsets by x-ray photoelectron spectroscopy. Appl. Phys. Lett. 98, 242110_1–3 (2011).CrossRefGoogle Scholar
Moon, Y-K., Lee, S., Kim, W-S., Kang, B-W., Jeong, C-O., Lee, D-H., and Park, J-W.: Improvement in the bias stability of amorphous indium gallium zinc oxide thin-film transistors using an O2 plasma-treated insulator. Appl. Phys. Lett. 95, 013507_1–3 (2009).CrossRefGoogle Scholar
Ji, K.H., Kim, J-I., Mo, Y-G., Jeong, J.H., Yang, S., Hwang, C-S., Park, S-H.K., Ryu, M-K., Lee, S-Y., and Jeong, J.K.; Comparative study on light-induced bias stress instability of IGZO transistors with SiNx and SiO2 gate dielectrics. IEEE Electron Device Lett. 31, 14041406 (2010).CrossRefGoogle Scholar
Ji, K.H., Kim, J-I., Jung, H.Y., Park, S.Y., Mo, Y-G., Jeong, J.H., Kwon, J-Y., Ryu, M-K., Lee, S.Y., Choi, R., and Jeong, J.K.: The effect of density-of-state on the temperature and gate bias-induced instability of InGaZnO thin film transistor. J. Electrochem. Soc. 157, H983H986 (2010).CrossRefGoogle Scholar
Tan, Y-N., Chim, W-K., Cho, B.J., and Choi, W-K.: Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage layer. IEEE Trans. Electron Devices 51, 11431145 (2004).CrossRefGoogle Scholar
Janotti, A. and Van de Walle, C.G.: Oxygen vacancies in ZnO. Appl. Phys. Lett. 87, 122102_1–3 (2005).CrossRefGoogle Scholar
Lany, S. and Zunger, A.: Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductor. Phys. Rev. B 72, 035215_1–13 (2005).CrossRefGoogle Scholar
Janotti, A. and Van de Walle, C.G.: Native point defects in ZnO. Phys. Rev. B 76, 165202_1–22 (2007).CrossRefGoogle Scholar
Janotti, A. and Van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501_1–27 (2009).CrossRefGoogle Scholar
Ghaffazadeh, K., Nathan, A., Roberson, J., Kim, S., Jeong, S., Kim, C., Chung, U-I., and Lee, J.H.: Persistent photoconductivity in Hf-In-Zn-O thin film transistors. Appl. Phys. Lett. 97, 143510_1–3 (2010).Google Scholar
Chowdhury, M.D.H., Migliorato, P., and Jang, J.: Light induced instabilities in amorphous indium-gallium-zinc-oxide thin-film transistors. Appl. Phys. Lett. 97, 173506_1–3 (2010).CrossRefGoogle Scholar
Omura, H., Kumomi, H., Nomura, K., Kamiya, T., Hirano, M., and Hosono, H.: First-principles study of native point defects in crystalline indium gallium zinc oxide. J. Appl. Phys. 105, 093712_1–8 (2009).CrossRefGoogle Scholar
Oh, H., Yoon, S-M., Ryu, M.K., Hwang, C-S., Yang, S., and Park, S-H.K.: Photon-accelerated negative bias instability involving subgap states creation in amorphous In-Ga-Zn-O thin film transistor. Appl. Phys. Lett. 97, 183502_1–3 (2010).CrossRefGoogle Scholar
Oh, H., Park, S-H.K., Hwnag, C-S., Yang, S., and Ryu, M.K.: Enhanced bias illumination stability of oxide thin film transistor through insertion of ultrathin positive charge barrier into active material. Appl. Phys. Lett. 99, 022105_1–3 (2011).CrossRefGoogle Scholar
Oh, S., Yang, B.S., Kim, Y.J., Oh, M.S., Jang, M., Yang, H., Jeong, J.K., Hwang, C.S., and Kim, H.J.: Anomalous behavior of negative bias illumination stress instability in an indium zinc oxide transistor: A cation combinatorial approach. Appl. Phys. Lett. 101, 092107_1–5 (2012).CrossRefGoogle Scholar
Migliorato, P., Chowdhury, M.D.H., Um, J.G., Seok, M., and Jang, J.: Light/negative bias stress instabilities in indium gallium zinc oxide thin film transistors explained by creation of a double donor. Appl. Phys. Lett. 101, 123502_1–5 (2012).CrossRefGoogle Scholar
Nahm, H-H., Kim, Y-S., and Kim, D.H.: Instability of amorphous oxide semiconductors via carrier-mediated structural transition between disorder and peroxide state. Phys. Status Solidi B 249, 12771281 (2012).CrossRefGoogle Scholar
Lee, D.H., Kawamura, K., Nomura, K., Kamiya, T., and Hosono, H.: Large photoresponse in amorphous In-Ga-Zn-O and origin of reversible and slow decay semiconductor devices, materials, and processing. Electrochem. Solid-State Lett. 13, H324H327 (2010).CrossRefGoogle Scholar
Chowdhury, M.D.H., Migliorato, P., and Jang, J.: Time-temperature dependence of positive gate bias stress and recovery in amorphous indium-gallium-zinc-oxide thin-film-transistors. Appl. Phys. Lett. 98, 153511_1–3 (2011).CrossRefGoogle Scholar
Xu, J., Pan, Q., Shun, Y., and Tian, Z.: Grain size control and gas sensing properties of ZnO gas sensor. Sens. Actuators, B 66(1–3), 277279 (2000).CrossRefGoogle Scholar
Shishiyanu, S.T., Shishiyanu, T.S., and Lupan, O.I.: Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor. Sens. Actuators, B 107, 379386 (2005).CrossRefGoogle Scholar
Kang, D., Lim, H., Kim, C., Song, I., Park, J., Park, Y., and Chung, J.: Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules. Appl. Phys. Lett. 90, 192101_1–3 (2007).CrossRefGoogle Scholar
Jeong, J.K., Yang, H.W., Jeong, J.H., Mo, Y.G., and Kim, H.D.: Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Appl. Phys. Lett. 93, 123508_1–3 (2008).CrossRefGoogle Scholar
Chen, Y.C., Chang, T.C., Li, H.W., Chen, S.C., Lu, J., Chung, W.F., Tai, Y.H., and Tseng, T.Y.: Bias-induced oxygen adsorption in zinc tin oxide thin film transistors under dynamic stress. Appl. Phys. Lett. 96, 262104_1-3 (2010).CrossRefGoogle Scholar
Sung, S.Y., Choi, J.H., Han, U.B., Lee, C.K., Lee, J.H., Kim, J.J., Lim, W., Pearton, S.J., Norton, D.P., and Heo, Y.W.: Effects of ambient atmosphere on the transfer characteristics and gate-bias stress stability of amorphous indium-gallium-zinc oxide thin-film transistors. Appl. Phys. Lett. 96, 102107_1–3 (2010).CrossRefGoogle Scholar
Göpel, W.: Chemisorption and charge transfer at ionic semiconductor surfaces: Implication in designing gas sensors. Prog. Surf. Sci. 20, 9103 (1985).CrossRefGoogle Scholar
Göpel, W.: Initial steps of interface formation: Surface states and thermodynamics. J. Vac. Sci. Technol. 16, 12291235 (1979).CrossRefGoogle Scholar
Gorrn, P., Riedl, T., and Kowalsky, W.: Encapsulation of zinc tin oxide based thin film transistors. J. Phys. Chem. C 113, 1112611130 (2009).CrossRefGoogle Scholar
Lee, K-H., Jung, J.S., Son, K.S., Park, J.S., Kim, T.S., Choi, R., Jeong, J.K., Kwon, J-Y., Koo, B., and Lee, S.: The effect of moisture on the photon-enhanced negative bias thermal instability in Ga-In-Zn-O thin film transistors. Appl. Phys. Lett. 95, 232106_1–3 (2009).CrossRefGoogle Scholar
Yang, S., Cho, D-H., Ryu, M.K., Park, S-H.K., Hwang, C-S., Jang, J., and Jeong, J.K.: High performance Al-Sn-Zn-In-O thin film transistors: Impact of passivation layer on device stability. IEEE Electron Device Lett. 31, 144146 (2010).CrossRefGoogle Scholar
Kwon, J-Y., Jung, J.S., Son, K.S., Lee, K-H., Park, J.S., Kim, T.S., Park, J-S., Choi, R., Jeong, J.K., Koo, B., and Lee, S.: The impact of gate dielectric materials on the light-induced bias instability in Hf-In-Zn-O thin film transistor. Appl. Phys. Lett. 97, 183503_1–3 (2010).CrossRefGoogle Scholar
Kim, J.H., Kim, U.K., Chung, Y.J., and Hwang, C.S.: Improvement in the negative bias illumination temperature stress instability of In-Ga-Zn-O thin film transistors using an Al2O3 buffer layer. Phys. Status Solidi RRL 5(5–6), 178180 (2011).CrossRefGoogle Scholar
Lee, C-K., Jung, H.Y., Park, S.Y., Son, B.G., Lee, C-K., Kim, H.J., Choi, R., Kim, D-H., Bae, J-U., Shin, W-S., and Jeong, J.K.: Suppression in negative bias illumination stress instability of zinc-tin oxide transistor by insertion of thermal TiOx film. IEEE Electron Device Lett. 34, 253255 (2013).CrossRefGoogle Scholar
Park, S.Y., Ji, K.H., Kim, J-I., Jung, H.Y., Choi, R., Son, K.S., Ryu, M.K., Lee, S., and Jeong, J.K.: Improvement in the device performance of tin-doped indium oxide transistor by oxygen high pressure annealing at 150 °C. Appl. Phys. Lett. 100, 162108_1–4 (2012).Google Scholar
Son, K.S., Park, J.S., Kim, T.S., Kim, H-S., Seo, S-J., Kim, S-J., Seon, J-B., Ji, K.H., Jeong, J.K., Ryu, M.K., and Lee, S.: Improvement of photo-induced negative bias stability of oxide TFTs by reducing of sub-gap states related to oxygen vacancies. Appl. Phys. Lett. 102, 122108_1–4 (2013).CrossRefGoogle Scholar
Yang, S., Ji, K.H., Kim, U.K., Hwang, C.S., Park, S-H.K., Hwang, C-S., Jang, J., and Jeong, J.K.: Suppression in the negative bias illumination instability of Zn-Sn-O transistor using oxygen plasma treatment. Appl. Phys. Lett. 99, 102103_1–3 (2011).CrossRefGoogle Scholar
Yang, B.S., Park, S., Oh, S., Kim, Y.J., Jeong, J.K., Hwang, C.S., and Kim, H.J.: Improvement of the photo-bias stability of the Zn-Sn-O field effect transistors by an ozone treatment. J. Mater. Chem. 22, 1099410998 (2012).CrossRefGoogle Scholar
Seiyama, T.: Chemical Sensor Technology, Vol. 1 (Kodansha/Elsevier, Tokyo, Japan, 1988).Google Scholar
Yang, B.S., Huh, M.S., Oh, S., Lee, U.S., Kim, Y.J., Oh, M.S., Jeong, J.K., Hwang, C.S., and Kim, H.J.: Role of ZrO2 incorporation in the suppression of negative bias illumination-induced instability in Zn-Sn-O thin film transistors. Appl. Phys. Lett. 98, 122110_1–3 (2011).CrossRefGoogle Scholar
Barin, I.: Thermochemical Data of Pure Substances, Part 2 (VCH, New York, 1989).Google Scholar
Kamiya, T., Nomura, K., and Hosono, H.: Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors. Appl. Phys. Lett. 96, 122103_1–3 (2010).CrossRefGoogle Scholar
Nomura, K., Kamiya, T., Ohta, H., Ueda, K., Hirano, M., and Hosono, H.: Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films. Appl. Phys. Lett. 85, 19931995 (2004).CrossRefGoogle Scholar
Nomura, K., Kamiya, T., and Hosono, H.: Highly stable amorphous In-Ga-Zn-O thin-film transistors produced by eliminating deep subgap defects. Appl. Phys. Lett. 99, 053505_1–3 (2011).CrossRefGoogle Scholar
Park, J.S., Kim, T.S., Son, K.S., Lee, K.H., Maeng, W.J., Kim, H.S., Kim, E.S., Park, K.B., Seon, J.B., Choi, W., Ryu, M.K., and Lee, S.Y.: The influence of SiOx and SiNx passivation on the negative bias stability of Hf-In-Zn-O thin film transistors under illumination. Appl. Phys. Lett. 96, 262109_1–3 (2010).CrossRefGoogle Scholar
Kim, H.J., Park, S.Y., Jung, H.Y., Son, B.G., Lee, C-K., Lee, C-K., Jeong, J.H., Mo, Y.G., Son, K.S., Ryu, M.K., Lee, S., and Jeong, J.K.: Role of incorporated hydrogen on performance and photo-bias instability of indium gallium zinc oxide thin film transistors. J. Phys. D: Appl. Phys. 46, 055104_1–6 (2013).CrossRefGoogle Scholar
Gosain, D.P. and Tanaka, T.: Instability of amorphous indium gallium zinc oxide thin film transistors under light illumination. Jpn. J. Appl. Phys. 48, 03B018_1–5 (2009).CrossRefGoogle Scholar
Ohara, H., Sasaki, T., Noda, K., Ito, S., Sasaki, M., Endo, Y., Yoshitomi, S., Sakata, J., Serikawa, T., and Yamazaki, S.: 4.0-inch active-matrix organic light-emitting diode display integrated with driver circuits using amorphous In-Ga-Zn-Oxide thin-film transistors with suppressed variation. Jpn. J. Appl. Phys. 49, 03CD02_1–6 (2010).CrossRefGoogle Scholar