Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T01:14:23.473Z Has data issue: false hasContentIssue false

Phase transition of iron inside carbon nanotubes under electron irradiation

Published online by Cambridge University Press:  03 March 2011

Hansoo Kim
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Michael J. Kaufman
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Wolfgang M. Sigmund*
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Selective encapsulation of different materials or phases of a material inside a carbon nanotube leads to controlling local properties of the nanotube. We report a method of synthesizing stable γ-Fe selectively inside a carbon nanotube by transforming α-Fe through electron irradiation in situ inside a transmission electron microscope. Therefore, this method enables a single nanotube to encase both high (γ-Fe) and low (α-Fe) temperature phases of iron simultaneously. γ-Fe produced by this method may be used as a novel catalyst, and its presence inside a carbon nanotube may affect the physical properties of the nanotube, which therefore can be used to modify the nanotube.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kaufman, L., Clougherty, E.V. and Weiss, R.J.: Lattice stability of metals 3. Iron. Acta. Metall. 11, 323 (1963).CrossRefGoogle Scholar
2Hasegawa, H. and Pettifor, D.G.: Microscopic theory of the temperature-pressure phase diagram of iron. Phys. Rev. Lett. 50, 130 (1983).CrossRefGoogle Scholar
3Ross, M., Young, D.A. and Grover, R.: Theory of the iron phasediagram at earth core conditions. J. Geophys. Res. 95, 21713 (1990).CrossRefGoogle Scholar
4Bassett, W.A. and Weathers, M.S.: Stability of the body-centered cubic phase of iron–a thermodynamic analysis. J. Geophys. Res. 95, 21709 (1990).CrossRefGoogle Scholar
5Corliss, L.M., Hastings, J.M. and Weiss, R.J.: J. Phys. Chem. Solids 25, 183 (1964).Google Scholar
6Johanson, G.J., Mcgirr, M.B. and Wheeler, D.A.: Determination of the Néel temperature of face-centered-cubic iron. Phys. Rev. B 1, 3208 (1970).CrossRefGoogle Scholar
7Zillgen, H., Feldmann, B. and Wuttig, M.: Structural and magnetic properties of ultrathin Fe films deposited at low temperature on Cu(100). Surf. Sci. 321, 32 (1994).CrossRefGoogle Scholar
8Paduani, C. and Silva, E.G. Da: Electronic structure of gamma-iron. J. Magn. Magn. Mater. 134, 161 (1994).CrossRefGoogle Scholar
9Fernando, G.W. and Cooper, B.R.: Theory of electronic structure and magnetic behavior of fcc iron grown on Cu(001). Phys. Rev. B 38, 3016 (1988).CrossRefGoogle ScholarPubMed
10Falvo, M.R., Clary, G.J., Taylor, R.M., Chi, V., Brooks, F.P., Washburn, S. and Superfine, R.: Bending and buckling of carbon nanotubes under large strain. Nature 389, 582 (1997).CrossRefGoogle ScholarPubMed
11Robertson, D.H., Brenner, D.W. and Mintmire, J.W.: Energetics of nanoscale graphitic tubules. Phys. Rev. B 45, 12592 (1992).CrossRefGoogle ScholarPubMed
12 J.W.G. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley and C. Dekker: Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59 (1998).CrossRefGoogle Scholar
13Cheung, C.L., Kurtz, A., Park, H. and Lieber, C.M.: Diameter-controlled synthesis of carbon nanotubes. J Phys. Chem. B 106, 2429 (2002).CrossRefGoogle Scholar
14O’Connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kittrell, C., Ma, J.P., Hauge, R.H., Weisman, R.B. and Smalley, R.E.: Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593 (2002).CrossRefGoogle ScholarPubMed
15Baughman, R.H., Zakhidov, A.A. and de Heer, W.A.: Carbon nanotubes—the route toward applications. Science 297, 787 (2002).CrossRefGoogle ScholarPubMed
16Kim, H., Kaufman, M., Sigmund, W., Jacques, D. and Andrews, R.: Observation and formation mechanism of stable face-centered-cubic Fe nanorods in carbon nanotubes. J. Mater. Res. 18, 1104 (2003).CrossRefGoogle Scholar
17Bain, E.C.: Trans. Am. Inst. Min. Metall. Pet. Eng. 70, 25 (1924).Google Scholar
18Milstein, F., Fang, H.E. and Marschal, J.: Mechanics and energetics of the Bain transformation. Philos. Mag. A 70, 621 (1994).CrossRefGoogle Scholar
19Swalin, R.A.: Thermodynamics of Solids , 2nd ed., edited by Burke, J.E., Charlmers, B., and Krumhansl, J.A. (Wiley, New York, 1972).Google Scholar
20Dujardin, E., Ebbesen, T.W., Hiura, H. and Tanigaki, K.: Capillarity and wetting of carbon nanotubes. Science 265, 1850 (1994).CrossRefGoogle ScholarPubMed
21Wong, E.W., Sheehan, P.E. and Lieber, C.M.: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 (1997).CrossRefGoogle Scholar
22Hack, K.Thermodynamics at work (Institute of Materials, London, U.K., 1996).Google Scholar
23Kim, H. and Sigmund, W.: Effect of a graphitic structure on the stability of FCC iron. J. Cryst. Growth (in press)Google Scholar
24Kim, H. and Sigmund, W. Iron nanoparticles in carbon nanotubes at various temperatures. (to be published)Google Scholar
25Ajayan, P.M., Ebbesen, T.W., Ichihashi, T., Iijima, S, Tanigaki, K. and Hiura, H.: Opening carbon nanotubes with oxygen and implications for filling. Nature 362, 522 (1993).CrossRefGoogle Scholar
26Heyd, R., Charlier, A. and McRae, E.: Uniaxial-stress effects on the electronic properties of carbon nanotubes. Phys. Rev. B 55, 6820 (1997).CrossRefGoogle Scholar
27Yang, L., Anantram, M.P., Han, J. and Lu, J.P.: Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain. Phys. Rev. B 60, 13874 (1999).Google Scholar
28Cardwell, A.B.: Photoelectric studies of iron. Phys. Rev. 92, 554 (1953).CrossRefGoogle Scholar
29Suzuki, S., Bower, C., Watanabe, Y. and Zhou, O.: Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles. Appl. Phys. Lett. 76, 4007 (2000).CrossRefGoogle Scholar
30Lovall, D., Buss, M., Graugnard, E., Andres, R.P., Reifenberger, R.: Electron emission and structural characterization of a rope of single-walled carbon nanotubes. Phys. Rev. B 61, 5683 (2000).CrossRefGoogle Scholar
31Ago, H., Kugler, T., Cacialli, F., Salaneck, W.R., Shaffer, M.S.P., Windle, A.H. and Friend, R.H.: Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B 103, 8116 (1999).CrossRefGoogle Scholar