Hostname: page-component-599cfd5f84-d4snv Total loading time: 0 Render date: 2025-01-07T07:44:10.779Z Has data issue: false hasContentIssue false

Phase transformation and microstructural development of zirconia/stainless steel bonded with a Ti/Ni/Ti interlayer for the potential application in solid oxide fuel cells

Published online by Cambridge University Press:  09 April 2014

Shen-Hung Wei
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan
Chien-Cheng Lin*
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The 8 mol% yttria-stabilized zirconia (8Y-ZrO2) was bonded to stainless steel 316L at 900 °C for 1 h in a protective Ar atmosphere using an interlayer of Ti/Ni/Ti. Interfacial microstructures were characterized using both secondary electron microscope (SEM) and transmission electron microscope (TEM), each with an attached energy dispersive spectroscope (EDS). A layer sequence of σ-phase/TiFe2/TiFe + β-Ti/Ti2Fe was observed at the stainless steel 316L/Ti interface, whereas a layer sequence of Ti2Ni/Ti2Ni + TiNi/TiNi3 was found at the Ti/Ni interface. Furthermore, TiO and c-ZrO2−x formed at the Ti/8Y-ZrO2 interface. An acicular α-Ti and a fine ω-phase existed along with β-Ti in the residual Ti foil adjacent to the stainless steel 316L, but α-Ti and Ti2Ni were observed within β-Ti in the other residual Ti foil adjacent to the 8Y-ZrO2. The orientation relationships of the ω-phase and β-Ti were ${\left[ {1\bar 10} \right]_{{\rm{ \beta {\hbox-} Ti}}}}//{\left[ {1\bar 210} \right]_{\rm{\omega }}}$ and ${\left( {111} \right)_{{\rm{\beta {\hbox-} Ti}}}}//{\left( {0001} \right)_{\rm{\omega }}}$, respectively. The microstructural development was elucidated with the aid of Fe–Ti and Ni–Ti binary phase diagrams.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Minh, N.Q.: Ceramic fuel cells. J. Am. Ceram. Soc. 76(3), 563 (1993).CrossRefGoogle Scholar
Cheng, C.H., Chang, Y.W., and Hong, C.W.: Multiscale parametric studies on the transport phenomenon of a solid oxide fuel cell. J. Fuel Cell Sci. Technol. 2(4), 219 (2005).CrossRefGoogle Scholar
Ormerod, R.M.: Solid oxide fuel cells. Chem. Soc. Rev. 32(1), 17 (2003).CrossRefGoogle ScholarPubMed
Zhu, W.Z. and Deevi, S.C.: Development of interconnect materials for solid oxide fuel cells. Mater. Sci. Eng. A 348(1–2), 227 (2003).CrossRefGoogle Scholar
Antepara, I., Villarreal, I., Rodríguez-Martínez, L.M., Lecanda, N., Castro, U., and Laresgoiti, A.: Evaluation of ferritic steels for use as interconnects and porous metal supports in IT-SOFCs. J. Power Sources 151, 103 (2005).CrossRefGoogle Scholar
Singh, M., Shpargel, T.P., and Asthana, R.: Brazing of stainless steel to yttria-stabilized zirconia using gold-based brazes for solid oxide fuel cell applications. Int. J. Appl. Ceram. Technol. 4(2), 119 (2007).CrossRefGoogle Scholar
Molin, S., Gazda, M., Kusz, B., and Jasinski, P.: Evolution of 316L porous stainless steel for SOFC support. J. Eur. Ceram. Soc. 29, 757 (2009).CrossRefGoogle Scholar
Niewolak, L., Wessel, E., Singheiser, L., and Quadakkers, W.J.: Potential suitability of ferritic and austenitic steels as interconnect materials for solid oxide fuel cells operating at 600°C. J. Power Sources 195, 7600 (2010).CrossRefGoogle Scholar
Smeacetto, F., Salvo, M., Ferraris, M., Casalegno, V., and Asinari, P.: Glass and composite seals for the joining of YSZ to metallic interconnect in solid oxide fuel cells. J. Eur. Ceram. Soc. 28(3), 611 (2008).CrossRefGoogle Scholar
Liu, G.W., Li, W., Qiao, G.J., Wang, H.J., Yang, J.F., and Lu, T.J.: Microstructures and interfacial behavior of zirconia/stainless steel joint prepared by pressureless active brazing. J. Alloys Compd. 470(1–2), 163 (2009).CrossRefGoogle Scholar
Singh, M., Shpargel, T.P., and Asthana, R.: Braze oxidation behavior and joint microstructure in YSZ/steel joints made using palladium brazes for SOFC applications. Mater. Sci. Eng. A 485(1–2), 695 (2008).CrossRefGoogle Scholar
Zheng, C., Lou, H., Fei, Z., and Li, Z.: Partial transient liquid-phase bonding of Si3N4 with Ti/Cu/Ni multi-interlayers. J. Mat. Sci. Lett. 16(24), 2026 (1997).CrossRefGoogle Scholar
Paulasto, M., Ceccone, G., and Peteves, S.D.: Joining of silicon nitride via a transient liquid. Scr. Mater. 36(10), 1167 (1997).CrossRefGoogle Scholar
Chen, R., Zuo, D., and Wang, M.: Improvement of joint strength of SiCp/A1 metal matrix composite in transient liquid phase bonding using Cu/Ni/Cu film interlayer. J. Mater. Sci. Technol. 22(3), 291 (2006).Google Scholar
Qiao, G.J., Wang, H.J., Gao, J.Q., and Jin, Z.H.: Brazing Al2O3 to Kovar alloy with Ni/Ti/Ni interlayer and dramatic increasing of joint strength after thermal cycles. Mater. Sci. Forum 486487, 481 (2005).CrossRefGoogle Scholar
Smorygo, O., Kim, J.S., Kim, M.D., and Eom, T.G.: Evolution of the interlayer microstructure and the fracture modes of the zirconia/Cu-Ag-Ti filler/Ti active brazing joints. Mater. Lett. 61(2), 613 (2007).CrossRefGoogle Scholar
Wang, Z.G., Kato, N., Sasaki, K., Hirayama, T., and Saka, H.: Electron holographic mapping of two-dimensional doping areas in cross-sectional device specimens prepared by the lift-out technique based on a focused ion beam. J. Electron Microsc. 53(2), 115 (2004).CrossRefGoogle ScholarPubMed
Cliff, G. and Lorimer, G.W.: The quantitative analysis of thin specimens. J. Microsc. 103(2), 203 (1975).CrossRefGoogle Scholar
Hinotani, S. and Ohmori, Y.: The microstructure of diffusion-bonded Ti/Ni interface. Trans. Jpn. Inst. Met. 29, 116 (1988).CrossRefGoogle Scholar
Chang, Y.W. and Lin, C.C.: Compositional dependence of phase formation mechanisms at the interface between titanium and calcia-stabilized zirconia at 1550°C. J. Am. Ceram. Soc. 93(11), 3893 (2010).CrossRefGoogle Scholar
Ghosh, M., Bhanumurthy, K., Kale, G.B., Krishnan, J., and Chatterjee, S.: Diffusion bonding of titanium to 304 stainless steel. J. Nucl. Mater. 322(2–3), 235 (2003).CrossRefGoogle Scholar
Ghosh, M. and Chatterjee, S.: Diffusion bonded transition joints of titanium to stainless steel with improved properties. Mater. Sci. Eng. A 358(1–2), 152 (2003).CrossRefGoogle Scholar
Ghosha, M., Chatterjee, S., and Mishra, B.: The effect of intermetallics on the strength properties of diffusion bonds formed between Ti-5.5Al-2.4V and 304 stainless steel. Mater. Sci. Eng. A 363(1–2), 268 (2003).CrossRefGoogle Scholar
Orhan, N., Khan, T.I., and Eroglu, M.: Diffusion bonding of a microduplex stainless steel to Ti-6Al-4V. Scr. Mater. 45(4), 441 (2001).CrossRefGoogle Scholar
Gschneidner, K.A. Jr. and Verkade, M.: Electronic and crystal structures, size (ECS2) model for predicting binary solid solutions. Prog. Mater. Sci. 49(3–4), 411 (2004).CrossRefGoogle Scholar
Qin, H., Hu, J., Li, B., Zhao, M., Liu, X., and Chen, J.: Fe74.5-xCuxV3Si13.5B9 as-spun ribbons prepared by melt-spinning technique. Mater. Trans. 49, 2761 (2008).CrossRefGoogle Scholar
Murray, J.L.: The Fe-Ti (iron-titanium) system. Bull. Alloy Phase Diagrams 2(3), 320 (1981).CrossRefGoogle Scholar
He, P., Zhang, J.H., and Li, X.Q.: Diffusion bonding of titanium alloy to stainless steel wire mesh. Mater. Sci. Technol. 17, 1158 (2001).CrossRefGoogle Scholar
Lin, K.L. and Lin, C.C.: Reaction between titanium and zirconia powders during sintering at 1500°C. J. Am. Ceram. Soc. 90(7), 2220 (2007).CrossRefGoogle Scholar
Lin, K.L. and Lin, C.C.: Effects of annealing temperature on microstructural development at the interface between zirconia and titanium. J. Am. Ceram. Soc. 90(3), 893 (2007).CrossRefGoogle Scholar
Lin, C.C., Chang, Y.W., Lin, K.L., and Lin, K.F.: Effect of yttria on interfacial reactions between titanium melt and hot-pressed yttria/zirconia composites at 1700oC. J. Am. Ceram. Soc. 91(7), 2321 (2008).CrossRefGoogle Scholar
Perevertailo, V.M., Loginova, O.B., and Bagno, N.G.: Interaction between metal melts and zirconium dioxide. Trans. JWRI 30, 143 (2001).Google Scholar
Xue, X.M., Wang, J.T., and Sui, Z.T.: Wettability and interfacial reaction of alumina and zirconia by reactive silver-indium base alloy at mid-temperatures. J. Mater. Sci. 28(5), 1317 (1993).CrossRefGoogle Scholar
Hickman, B.S.: The formation of omega phase in titanium and zirconium alloys: A review. J. Mater. Sci. 4(6), 554 (1969).CrossRefGoogle Scholar
Kornilov, I.I. and Boriskina, N.G.: The Ti-Fe phase diagram. Dokl. Akad. Nauk SSSR 108, 1083 (1956).Google Scholar
Itkin, V.P.: Cr-Fe (Chromium-Iron), in Phase Diagrams of Binary Iron Alloys, Okamoto, H. ed.; ASM International, Metal Park, OH, 1993, p. 102.Google Scholar
Grot, A.S. and Spruiell, J.E.: Microstructural stability of titanium-modified type 316 and type 321 stainless steel. Metall. Mater. Trans. A 6(11), 2023 (1975).CrossRefGoogle Scholar
Hull, F.C.: Effects of composition on embrittlement of austenitic stainless steel. Weld. Res. Suppl. 52, S104 (1973).Google Scholar
Bastin, G.F. and Rieck, G.D.: Diffusion in the titanium-nickel system: I. occurrence and growth of the various intermetallic compounds. Metall. Mater. Trans. B 5(8), 1817 (1974).CrossRefGoogle Scholar
Nishida, M., Wayman, C.M., and Honma, T.: Precipitation processes in near-equiatomic TiNi shape memory alloys. Metall. Mater. Trans. A 17(9), 1505 (1986).CrossRefGoogle Scholar
Hare, E.W. and Polonis, D.H.: Electrical resistivity-constitution relationships in Ti-Fe and Ti-Ni alloys. J. Mater. Sci.: Mater. Electron. 1(1), 25 (1990).Google Scholar
Moffat, D.L. and Larbalestier, D.C.: The competition between martensite and omega in quenched Ti-Nb alloys. Metall. Trans. A 19(7), 1677 (1988).CrossRefGoogle Scholar
Williams, J.C., Hickamn, B.S., and Leslie, D.H.: The effect of ternary additions on the decomposition of metastable beta-phase titanium alloys. Metall. Trans. 2(2), 477 (1971).CrossRefGoogle Scholar
Polonis, D.H.: Phase Transformations in Titanium-Rich Alloys with Iron and Nickel. Ph.D. Thesis, University of British Columbia, BC, Canada, 1955, pp. 65.Google Scholar