Published online by Cambridge University Press: 18 July 2011
The phase stability of ferroelectric, epitaxial, polydomain BaTiO3 thin films was examined using temperature-dependent x-ray diffraction (XRD) and in-plane electronic polarization measurements. The epitaxial BaTiO3 thin films were grown on MgO(100) substrates by a metal-organic chemical vapor deposition process. As-deposited and annealed BaTiO3 thin films with different domain structures were examined. Temperature-dependent plane-normal XRD analysis reveals well-defined phase transitions at 140 and 169 °C in the c- and a-oriented films, respectively. The measured Curie temperatures are consistent with those predicted by Landau-Ginsburg-Devonshire theory as applied to polydomain BaTiO3 thin films. Temperature-dependent in-plane electronic polarization measurements confirm that the 140 °C Curie temperature observed in the c-oriented film is a well-defined second-order paraelectric-ferroelectric transition.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.