Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T06:05:27.078Z Has data issue: false hasContentIssue false

Phase identification from electronic structures by Auger electron spectroscopy

Published online by Cambridge University Press:  31 January 2011

Fuchun Xu
Affiliation:
Department of Physics and Semiconductor Photonics Research Center, Xiamen University, Xiamen 361005, China
Duanjun Cai
Affiliation:
Department of Physics and Semiconductor Photonics Research Center, Xiamen University, Xiamen 361005, China
Junyong Kang*
Affiliation:
Department of Physics and Semiconductor Photonics Research Center, Xiamen University, Xiamen 361005, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A technique of phase identification from the characteristics of electronic structures is established by Auger electron spectroscopy. GaN epilayers in wurtzite and zinc-blende polytypes are used for practical investigations. Auger spectra show phase-dependent energetic shifts and peak intensity variations. Simulation of theoretical spectra reveals the substantial correlation of the Auger line shape with the bonding electronic states. This approach demonstrates the correspondence between electronic structure and atomic structure and hence provides criteria for phase identification.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kim, J.H.Holloway, P.H.: Wurtzite to zinc-blende phase transition in gallium nitride thin films. Appl. Phys. Lett. 84, 711 2004CrossRefGoogle Scholar
2Katsikint, M., Paloura, E.C.Moustakas, T.D.: Application of near-edge x-ray absorption fine structure for the identification of hexagonal and cubic polytypes in epitaxial GaN. Appl. Phys. Lett. 69, 4207 1996Google Scholar
3Huang, X.Liu, Q.: Determination of crystallographic and macroscopic orientation of planar structures in TEM. Ultramicroscopy 74, 123 1998CrossRefGoogle Scholar
4Briggs, D.Seah, M.P.Practical Surface Analysis 2nd ed.John Wiley & Sons Chichester, UK 1990 102Google Scholar
5Kovacs, Z., Kover, L., Varga, D., Weighman, P., Palinkas, J.Adachi, H.: Core-valence (KLV, KVV, LVV) Auger and high resolution valence band XPS spectra of aluminum: a comparison with the results of cluster MO calculations. J. Electron Spectrosc. Relat. Phenom. 72, 157 1995CrossRefGoogle Scholar
6Cai, D., Xu, F.C.Kang, J.Y.: High-spatial-resolution strain measurements by Auger electron spectroscopy in epitaxial-lateral-overgrowth GaN. Appl. Phys. Lett. 86, 211917 2005CrossRefGoogle Scholar
7Cimalla, V., Niebelschütz, M., Lebedev, V., Ambacher, O., Himmerlich, M., Krischok, S., Schaefer, J.A., Lu, H.Schaff, W.J.: Surface band bending at nominally undoped and Mg-doped InN by Auger electron spectroscopy. Phys. Status Solidi A 203, 59 2006CrossRefGoogle Scholar
8Svensson, S.P., Nilsson, P.O.Andersson, T.G.: Interpretation of low-energy Auger spectra from AlAs and GaAs(001): Applications to surface preparation. Phys. Rev. B 31, 5272 1988CrossRefGoogle Scholar
9Feibelman, P.J., McGuire, E.J.Pandy, K.C.: Theory of valence-band Auger line shapes: Ideal Si(111),(100), and(110). Phys. Rev. B 15, 2202 1977Google Scholar
10Chang, E.K.Shirley, E.L.: Ab initio calculation of KLV Auger spectra in Si. Phys. Rev. B 66, 035106 2002Google Scholar
11Yeh, C.Y., Lu, Z.W., Froyen, S.Zunger, A.: Predictions and systematizations of the zinc-blende–wurtzite structural energies in binary octet compounds. Phys. Rev. B 45, 12130 1992CrossRefGoogle ScholarPubMed
12Wei, S.H.Zhang, S.B.: Structure stability and carrier localization in CdX (X = S, Se, Te) semiconductors. Phys. Rev. B 62, 6944 2000CrossRefGoogle Scholar
13Yang, C.C., Wu, M.C., Lee, C.H.Chi, G.C.: X-ray diffraction characterization of epitaxial zinc-blende GaN films on a miscut GaAs(001) substrates using the hydride vapor-phase epitaxy method. J. Cryst. Growth 206, 8 1999CrossRefGoogle Scholar
14Hohenberg, P.Khon, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 1964Google Scholar
15Khon, W.Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 1965CrossRefGoogle Scholar
16Cai, D., Kang, J.Y.Zhu, Z.Z.: Layer structures under in-plane compressive strains in AlxGa1-xN/AlN interfaces. Phys. Rev. B 68, 073305 2003CrossRefGoogle Scholar
17Li, J.C.Kang, J.Y.: Polarization effect on p-type doping efficiency in Mg-Si codoped wurtzite GaN from first-principles calculations. Phys. Rev. B 71, 035216 2005CrossRefGoogle Scholar
18Ramaker, D.E., Hutson, F.L., Turner, N.H.Mei, W.N.: Charge transfer, polarization, and relaxation effects on the Auger line shapes of Si. Phys. Rev. B 33, 2574 1986CrossRefGoogle ScholarPubMed
19Luire, P.G.Wilson, J.M.: The diamond surface II. Secondary electron emission. Surf. Sci. 65, 476 1977Google Scholar
20Hidaka, T.: Theory of the piezoelectricity of zinc-blende-type and wurtzite-type crystals. Phys. Rev. B 5, 4030 1972CrossRefGoogle Scholar