Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T07:55:04.007Z Has data issue: false hasContentIssue false

Phase formation and stability in sputter deposited Be–Nb compounds

Published online by Cambridge University Press:  29 June 2016

J. L. Brimhall
Affiliation:
Pacific Northwest Laboratory, Battelle Memorial Institute, Richland, Washington 99352
L. A. Charlot
Affiliation:
Pacific Northwest Laboratory, Battelle Memorial Institute, Richland, Washington 99352
S. M. Bruemmer
Affiliation:
Pacific Northwest Laboratory, Battelle Memorial Institute, Richland, Washington 99352
Get access

Abstract

The phase relations and thermal stabilities of phases in sputter deposited Be–Nb alloys (3–14% Nb) have been studied. An amorphous phase forms during deposition at ambient temperatures (30 °C) for compositions >5% Nb. Metastable crystalline phases form during deposition at 350–450 °C as well as during annealing of the amorphous phase. One metastable bcc phase designated as Be12Nb′ can be explained by an extremely high fault density in the Be12Nb structure and is a precursor phase to the formation of both Be12Nb and Be17Nb2. Another metastable bcc phase also forms during high temperature deposition. Transformation to the equilibrium phases occurs at temperatures >800 °C. A stoichiometric range of about 5.5–7.8% is indicated for the Be12Nb phase and is probably due to vacancies on the Nb sublattice. No evidence of a Be5Nb phase was found and the Be17Nb2 phase is stable to room temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fleischer, R. L. and Zabala, R. J., Metall. Trans. A 20, 1279 (1989).CrossRefGoogle Scholar
2.Phase Diagrams of Binary Beryllium Alloys, edited by Okamoto, H. and Tanner, L. (ASM INTERNATIONAL, Metals Park, OH, 1987).Google Scholar
3.Binary Alloy Phase Diagrams, edited by Massalski, T. B., ASM, Metals Park, OH, 1986); see also 1990 edition.Google Scholar
4.Joint Committee on Powder Diffraction Standards, Sets 1–36, International Centre for Diffraction Data, 1601 Oak Lane, Swarth-more, PA 19081.Google Scholar
5.Brimhall, J. L., Kissinger, H. E., and Wang, R., J. Mater. Sci. 16, 994 (1981).CrossRefGoogle Scholar
6.Tanner, L. E. and Ray, R., Acta Metall. 27, 1727 (1979).CrossRefGoogle Scholar
7.Rizzo, H. F., Tanner, L. E., Mall, M. A., McClanahan, E. D., and Massalski, T. B., in Fundamentals of Beam-Solid Interactions and Transient Thermal Processing, edited by Aziz, M. J., Rehn, L. E., and Stritzker, B. (Mater. Res. Soc. Symp. Proc. 100, Pittsburgh, PA, 1988), p. 81.Google Scholar
8.Barbee, T. W. Jr. and Keith, D. L., in Synthesis and Properties of Metastable Phases, edited by Machlin, E. S. and Rowland, T. J. (TMS, Warrendale, PA, 1980), p. 93.Google Scholar
9.Johnson, W. L., Cheng, Y. T., Van Russum, M., and Nicolet, M-A., Nucl. Instrum. Methods B7/8, 657 (1985).CrossRefGoogle Scholar
10.Tanner, L. E., Acta Metall. 28, 1805 (1980).Google Scholar
11.Wang, R., in Theory of Alloy Phase Formation, edited by Bennett, L. H. (TMS-AIME, Warrendale, PA, 1980), p. 472.Google Scholar
12.Fujita, H., Hashimoto, K., and Tabata, T., Mater. Sci. Eng. 45, 221 (1980).CrossRefGoogle Scholar
13.Altounian, Z., Guo-hua, Tu, and Strom-Olsen, J. O., J. Appl. Phys. 54, 3111 (1983).Google Scholar
14.Inal, O. T., Keller, L., and Yost, F. G., J. Mater. Sci. 15, 1947 (1980).Google Scholar
15.Gillam, E. and Rooksby, H. P., Acta Cryst. 17, 762 (1964).Google Scholar
16.Felner, I., J. Less-Common Met. 72, 241 (1980).Google Scholar
17.Iandelli, A. and Palenzona, A., J. Less-Common Met. 12, 333 (1967).Google Scholar
18.Zalkin, A., Sands, D. E., Bradford, R., and Krikorian, O. H., Acta Cryst. 14, 63 (1961).Google Scholar
19.Sands, D. E., Johnson, Q. C., Krikorian, O. H., and Kromholtz, K. L., Acta Cryst. 15, 1191 (1962).Google Scholar
20.Kirby, R. F., Development of the Columbium Beryllides for High-Temperature Applications (University Microfilms, Inc., Ann Arbor, MI, 1969), pp. 69114, 1987.Google Scholar
21.Bradley, A. J. and Taylor, A., Proc. Roy. Soc. 159, 56 (1937).Google Scholar
22.Collins, D. M. and Mahar, M. C., Acta Cryst. C 40, 914 (1984).Google Scholar
23.Mahar, M. C. and Collins, D. M., Acta Cryst. C 40, 912 (1984).Google Scholar