Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T07:01:08.720Z Has data issue: false hasContentIssue false

Phase Evolution and Dielectric Characterization of Lead Nickel Niobate–lead Zirconate Ceramics Prepared from the Hydrothermally Derived Precursors

Published online by Cambridge University Press:  31 January 2011

Chung-Hsin Lu
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
Wen-Jeng Hwang
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
Get access

Abstract

The perovskite compounds with the composition of (1 – x) Pb(Ni1/3Nb2/3)O3xPbZrO3 have been successfully prepared from hydrothermally treated precursors. During calcination, the primary intermediate compound is pyrochlore phase in the Pb(Ni1/3Nb2/3)O3-rich composition, while it is PbZrO3 on the PbZrO3-rich side. On calcination at 800 °C, all precursors convert into perovskite phases. In the formed solid solutions, increasing PbZrO3 content results in a rise in the apparent Curie temperature as well as the maximum dielectric permittivity. The Pb(Ni1/3Nb2/3)O3-rich perovskites (x < 0.8) possess the characteristics of relaxor ferroelectrics. With increasing PbZrO3 content, the dielectric response gradually becomes less diffuse and dispersive, reflecting a reduction in the relaxor characteristics of the formed perovskites.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bokov, V. A. and Myl'nikova, I. E., Sov. Phys. Solid State, 3, 613 (1961).Google Scholar
2.Shrout, T.R., Swartz, S.L., and Haun, M.J., Am. Ceram. Soc. Bull. 63, 808 (1984).Google Scholar
3.Yonezawa, M., Ferroelectr. 68, 181 (1986).CrossRefGoogle Scholar
4.Furuya, M., Mori, T., Ochi, A., Saito, S., and Takahashi, S., Jpn. J. Appl. Phys. 31, 3139 (1992).CrossRefGoogle Scholar
5.Takahashi, S., Miyao, S., Yoneda, S., and Kuwabara, M., Jpn. J. Appl. Phys. 32, 4245 (1993).Google Scholar
6.Zhilun, G., Longtu, L., Suhua, G., and Xiaowen, Z., J. Am. Ceram. Soc. 72, 486 (1989).CrossRefGoogle Scholar
7.Zhilun, G., Lingtu, L., Hongqing, L., and Xiaowen, Z., Ferroelectr. 101, 93 (1990).CrossRefGoogle Scholar
8.Ichinose, N. and Kimura, M., Jpn. J. Appl. Phys. 30, 2220 (1991).CrossRefGoogle Scholar
9.Moon, J. H., Jang, H. M., and You, B. D., J. Mater. Res. 8, 3184 (1993).CrossRefGoogle Scholar
10.Yoon, M. S. and Jang, H. M., Ferroelectr. 173, 191 (1995).CrossRefGoogle Scholar
11.Belsick, J. R., Halliyal, A., Kumer, U., and Newnham, R. E., Am. Ceram. Soc. Bull. 66, 664 (1987).Google Scholar
12.Vivekanandan, R. and Kutty, T.R. N., Ceram. Int. 14, 207 (1988).Google Scholar
13.Rossetti, G. A. Jr, Watson, D. J., Newnham, R.E., and Adair, J.H., J. Cryst. Growth 116, 251 (1992).CrossRefGoogle Scholar
14.Dutta, P. K. and Gregg, J. R., Chem. Mater. 4, 843 (1992).CrossRefGoogle Scholar
15.Cheng, H., Ma, J., Zhu, B., and Cui, Y., J. Am. Ceram. Soc. 76, 625 (1993).Google Scholar
16.Lu, C. H. and Lo, S. Y., Mater. Res. Bull. 32, 371 (1997).Google Scholar
17.Lu, C. H. and Hwang, W. J., Mater. Lett. 27, 229 (1996).Google Scholar
18.Shrout, T.R. and Halliyal, A., Am. Ceram. Soc. Bull. 66, 704 (1987).Google Scholar
19.Lu, C. H. and Hwang, W. J., Ceram. Int. 22, 373 (1996).Google Scholar
20. Powder Diffraction File, Card No. 34–103, Joint Committee on Powder Diffraction Standards, Swarthmore, PA.Google Scholar
21. Powder Diffraction File, Card No. 35–739, Joint Committee on Powder Diffraction Standards, Swarthmore, PA.Google Scholar
22.Uchino, K., Kojima, F., and Nomura, S., Ferroelectr. 15, 69 (1977).Google Scholar
23.Takenaka, T., Bhalla, A. S., and Cross, L. E., J. Am. Ceram. Soc. 72, 1016 (1989).Google Scholar
24.Blazhievskii, B. P., Isupov, V. A., Kozlovskii, L. V., Mikhailova, L. I., Moskalev, V. I., and Semenov, N. E., Inorg. Mater. 22, 418 (1986).Google Scholar
25.Lu, C. H. and Hwang, W.S., J. Mater. Res. 10, 2755 (1995).CrossRefGoogle Scholar
26.Lu, C. H. and Hwang, W.S., J. Ceram. Soc. Jpn. 104, 587 (1996).CrossRefGoogle Scholar
27.Kuchar, F. and Valena, M. W., Phys. Status Solidi 6, 525 (1971).Google Scholar