Published online by Cambridge University Press: 31 January 2011
The perovskite compounds with the composition of (1 – x) Pb(Ni1/3Nb2/3)O3 –xPbZrO3 have been successfully prepared from hydrothermally treated precursors. During calcination, the primary intermediate compound is pyrochlore phase in the Pb(Ni1/3Nb2/3)O3-rich composition, while it is PbZrO3 on the PbZrO3-rich side. On calcination at 800 °C, all precursors convert into perovskite phases. In the formed solid solutions, increasing PbZrO3 content results in a rise in the apparent Curie temperature as well as the maximum dielectric permittivity. The Pb(Ni1/3Nb2/3)O3-rich perovskites (x < 0.8) possess the characteristics of relaxor ferroelectrics. With increasing PbZrO3 content, the dielectric response gradually becomes less diffuse and dispersive, reflecting a reduction in the relaxor characteristics of the formed perovskites.