Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T17:22:14.930Z Has data issue: false hasContentIssue false

Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures

Published online by Cambridge University Press:  27 July 2018

Aditya Srinivasan Tirunilai
Affiliation:
Institute for Applied Materials (IAM-WK), Karlsruhe Institute of Technology (KIT), Karlsruhe D-76131, Germany
Jan Sas
Affiliation:
Institute for Technical Physics (ITEP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen D-76344, Germany
Klaus-Peter Weiss
Affiliation:
Institute for Technical Physics (ITEP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen D-76344, Germany
Hans Chen
Affiliation:
Institute for Applied Materials (IAM-WK), Karlsruhe Institute of Technology (KIT), Karlsruhe D-76131, Germany
Dorothée Vinga Szabó
Affiliation:
Institute for Applied Materials (IAM-WK), Karlsruhe Institute of Technology (KIT), Karlsruhe D-76131, Germany; and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen D-76344, Germany
Sabine Schlabach
Affiliation:
Institute for Applied Materials (IAM-WK), Karlsruhe Institute of Technology (KIT), Karlsruhe D-76131, Germany; and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen D-76344, Germany
Sebastian Haas
Affiliation:
Metals and Alloys, University Bayreuth, Bayreuth D-95447, Germany
David Geissler
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), Institute for Complex Materials, Dresden D-01069, Germany
Jens Freudenberger
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), Institute for Metallic Materials, Dresden D-01069, Germany; and Institute of Materials Science, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany
Martin Heilmaier
Affiliation:
Institute for Applied Materials (IAM-WK), Karlsruhe Institute of Technology (KIT), Karlsruhe D-76131, Germany
Alexander Kauffmann*
Affiliation:
Institute for Applied Materials (IAM-WK), Karlsruhe Institute of Technology (KIT), Karlsruhe D-76131, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This contribution presents a comprehensive analysis of the low temperature deformation behavior of CoCrFeMnNi on the basis of quasistatic tensile tests at temperatures ranging from room temperature down to 4.2 K. Different deformation phenomena occur in the high-entropy alloy in this temperature range. These include (i) serrated plastic flow at certain cryogenic temperatures (4.2 K/8 K), (ii) deformation twinning (4.2 K/8 and 77 K), and (iii) dislocation slip (active from 4.2 K up to room temperature). The importance of deformation twinning for a stable work-hardening rate over an extended stress range as well as strain range has been addressed through the use of comprehensive orientation imaging microscopy studies. The proposed appearance of ε-martensite as well as a previously uninvestigated route of analysis, essentially a quantitative time-dependent, strain-dependent, and stress-dependent evaluation of the serrated plastic flow in CoCrFeMnNi is provided.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yeh, J-W., Chen, Y-L., Lin, S-J., and Chen, S-K.: High-entropy alloys—A new era of exploitation. Mater. Sci. Forum 560, 19 (2007).CrossRefGoogle Scholar
Tsai, M-H.: Physical properties of high entropy alloys. Entropy 15, 53385345 (2013).CrossRefGoogle Scholar
Miracle, D. and Senkov, O.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448511 (2017).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 193 (2014).CrossRefGoogle Scholar
Tsai, M-H. and Yeh, J-W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107123 (2014).CrossRefGoogle Scholar
Yeh, J-W.: Physical metallurgy of high-entropy alloys. JOM 67, 22542261 (2015).CrossRefGoogle Scholar
Miracle, D.B.: Critical assessment 14: High entropy alloys and their development as structural materials. Mater. Sci. Technol. 31, 11421147 (2015).CrossRefGoogle Scholar
Pickering, E.J. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183202 (2016).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213218 (2004).CrossRefGoogle Scholar
Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 57435755 (2013).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 11531158 (2014).CrossRefGoogle ScholarPubMed
Zaddach, A.J., Niu, C., Koch, C.C., and Irving, D.L.: Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 65, 17801789 (2013).CrossRefGoogle Scholar
Huang, S., Li, W., Lu, S., Tian, F., Shen, J., Holmström, E., and Vitos, L.: Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scr. Mater. 108, 4447 (2015).CrossRefGoogle Scholar
Allain, S., Chateau, J-P., Bouaziz, O., Migot, S., and Guelton, N.: Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater. Sci. Eng., A 387–389, 158162 (2004).CrossRefGoogle Scholar
Saeed-Akbari, A., Imlau, J., Prahl, U., and Bleck, W.: Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels. Metall. Mater. Trans. A 40, 30763090 (2009).CrossRefGoogle Scholar
Cooman, B.C.D., Kwon, O., and Chin, K-G.: State-of-the-knowledge on TWIP steel. Mater. Sci. Technol. 28, 513527 (2012).CrossRefGoogle Scholar
Laplanche, G., Kostka, A., Horst, O., Eggeler, G., and George, E.: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 118, 152163 (2016).CrossRefGoogle Scholar
Stepanov, N., Tikhonovsky, M., Yurchenko, N., Zyabkin, D., Klimova, M., Zherebtsov, S., Efimov, A., and Salishchev, G.: Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics 59, 817 (2015).CrossRefGoogle Scholar
Abuzaid, W. and Sehitoglu, H.: Critical resolved shear stress for slip and twin nucleation in single crystalline FeNiCoCrMn high entropy alloy. Mater. Charact. 129, 288299 (2017).CrossRefGoogle Scholar
Sun, S., Tian, Y., Lin, H., Yang, H., Dong, X., Wang, Y., and Zhang, Z.: Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement. Mater. Sci. Eng., A 712, 603607 (2018).CrossRefGoogle Scholar
Geissler, D., Freudenberger, J., Kauffmann, A., Krautz, M., Klauss, H., Voss, A., Eickemeyer, J., and Schultz, L.: Appearance of dislocation-mediated and twinning-induced plasticity in an engineering-grade FeMnNiCr alloy. Acta Mater. 59, 77117723 (2011).CrossRefGoogle Scholar
Pustovalov, V.V.: Serrated deformation of metals and alloys at low temperatures. Low Temp. Phys. 34, 683723 (2008).CrossRefGoogle Scholar
Blewitt, T.H., Coltman, R.R., and Redman, J.K.: Low-temperature deformation of copper single crystals. J. Appl. Phys. 28, 651660 (1957).CrossRefGoogle Scholar
Basinski, Z.S.: The instability of plastic flow of metals at very low temperatures. Proc. R. Soc. A 240, 229242 (1957).CrossRefGoogle Scholar
Ogata, T., Ishikawa, K., Hiraga, K., Nagai, K., and Yuri, T.: Temperature rise during the tensile test in superfluid helium. Cryogenics 25, 444446 (1985).CrossRefGoogle Scholar
Aono, Y., Kuramoto, E., and Kitajima, K.: Orientation dependence of slip in niobium single crystals at 4.2 and 77 K. Scripta Metall. 18, 201205 (1984).CrossRefGoogle Scholar
Haasen, P.: Plastic deformation of nickel single crystals at low temperatures. Philos. Mag. A 3, 344418 (1958).Google Scholar
Ishikawa, K.: Tensile behaviour of Fe–13% Ni–3% Mo alloys deformed in liquid. J. Mater. Sci. Lett. 5, 377378 (1986).CrossRefGoogle Scholar
Moskalenko, V., Natsik, V., and Kovaleva, V.: Low temperature anomalies of Ti plasticity resulting from inertial properties of dislocation motion. Mater. Sci. Eng., A 309–310, 173177 (2001).CrossRefGoogle Scholar
Carroll, R., Lee, C., Tsai, C-W., Yeh, J-W., Antonaglia, J., Brinkman, B.A.W., LeBlanc, M., Xie, X., Chen, S., Liaw, P.K., and Dahmen, K.A.: Experiments and model for serration statistics in low-entropy, medium-entropy, and high-entropy alloys. Sci. Rep. 5, 16997 (2015).CrossRefGoogle ScholarPubMed
Zhang, Y., Liu, J.P., Chen, S.Y., Xie, X., Liaw, P.K., Dahmen, K.A., Qiao, J.W., and Wang, Y.L.: Serration and noise behaviors in materials. Prog. Mater. Sci. 90, 358460 (2017).CrossRefGoogle Scholar
Nelson, J. and Riley, D.: An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc. 57, 160 (1945).CrossRefGoogle Scholar
Kauffmann, A., Freudenberger, J., Klauß, H., Klemm, V., Schillinger, W., Sarma, V.S., and Schultz, L.: Properties of cryo-drawn copper with severely twinned microstructure. Mater. Sci. Eng., A 588, 132141 (2013).CrossRefGoogle Scholar
Haas, S., Mosbacher, M., Senkov, O.N., Feuerbacher, M., Freudenberger, J., Gezgin, S., Völkl, R., and Glatzel, U.: Entropy determination of single-phase high entropy alloys with different crystal structures over a wide temperature range. Acta Mater. (2018). (submitted).Google Scholar
Jin, K., Sales, B.C., Stocks, G.M., Samolyuk, G.D., Daene, M., Weber, W.J., Zhang, Y., and Bei, H.: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016).CrossRefGoogle ScholarPubMed
Hwang, J.S., Lin, K.J., and Tien, C.: Measurement of heat capacity by fitting the whole temperature response of a heat-pulse calorimeter. Rev. Sci. Instrum. 68, 94101 (1997).CrossRefGoogle Scholar
Bagrets, N., Goldacker, W., Schlachter, S.I., Barth, C., and Weiss, K-P.: Thermal properties of 2G coated conductor cable materials. Cryogenics 61, 814 (2014).CrossRefGoogle Scholar
Sas, J., Weiss, K-P., and Bagrets, N.: CryoMaK—The overview of cryogenic testing facilities in Karlsruhe. Acta Metall. Slovaca 21, 330338 (2015).CrossRefGoogle Scholar
Bhattacharjee, P., Sathiaraj, G., Zaid, M., Gatti, J., Lee, C., Tsai, C-W., and Yeh, J-W.: Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 587, 544552 (2014).CrossRefGoogle Scholar
Gludovatz, B., George, E.P., and Ritchie, R.O.: Processing, microstructure and mechanical properties of the CrMnFeCoNi high-entropy alloy. JOM 67, 22622270 (2015).CrossRefGoogle Scholar
Laplanche, G., Horst, O., Otto, F., Eggeler, G., and George, E.: Microstructural evolution of a CoCrFeMnNi high-entropy alloy after swaging and annealing. J. Alloys Compd. 647, 548557 (2015).CrossRefGoogle Scholar
Wu, Z., Bei, H., Otto, F., Pharr, G., and George, E.: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131140 (2014).CrossRefGoogle Scholar
Otto, F., Dlouhý, A., Pradeep, K., Kuběnová, M., Raabe, D., Eggeler, G., and George, E.P.: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 4052 (2016).CrossRefGoogle Scholar
Smith, T., Hooshmand, M., Esser, B., Otto, F., McComb, D., George, E., Ghazisaeidi, M., and Mills, M.: Atomic-scale characterization and modeling of 60° dislocations in a high-entropy alloy. Acta Mater. 110, 352363 (2016).CrossRefGoogle Scholar
Kauffmann, A., Freudenberger, J., Klauß, H., Schillinger, W., Sarma, V.S., and Schultz, L.: Efficiency of the refinement by deformation twinning in wire drawn single phase copper alloys. Mater. Sci. Eng., A 624, 7178 (2015).CrossRefGoogle Scholar
Kauffmann, A., Freudenberger, J., Geissler, D., Yin, S., Schillinger, W., Sarma, V.S., Bahmanpour, H., Scattergood, R., Khoshkhoo, M., Wendrock, H., Koch, C., Eckert, J., and Schultz, L.: Severe deformation twinning in pure copper by cryogenic wire drawing. Acta Mater. 59, 78167823 (2011).CrossRefGoogle Scholar
Borisova, D., Klemm, V., Martin, S., Wolf, S., and Rafaja, D.: Microstructure defects contributing to the energy absoprtion in CrMnNi TRIP steels. Adv. Eng. Mater. 15, 571582 (2013).CrossRefGoogle Scholar
Martin, S., Ullrich, C., Šimek, D., Martin, U., and Rafaja, D.: Stacking fault model of epsilon-martensite and its DIFFaX implementation. J. Appl. Crystallogr. 44, 779787 (2011).CrossRefGoogle Scholar
Geissler, D., Freudenberger, J., Kauffmann, A., Martin, S., and Rafaja, D.: Assessment of the thermodynamic dimension of the stacking fault energy. Philos. Mag. 94, 29672979 (2014).CrossRefGoogle Scholar
Adler, P.H., Olson, G.B., and Owen, W.S.: Strain hardening of hadfield manganese steel. Metall. Mater. Trans. A 17, 17251737 (1986).CrossRefGoogle Scholar
Olson, G.B. and Cohen, M.: A general mechanism of martensitic nucleation: Part I. General concepts and the fcc textrightarrow HCP transformation. Metall. Trans. A 7, 18971904 (1976).Google Scholar
Jin, K., Mu, S., An, K., Porter, W., Samolyuk, G., Stocks, G., and Bei, H.: Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys. Mater. Des. 117, 185192 (2017).CrossRefGoogle Scholar
Basinski, Z.S.: The instability of plastic flow of metals at very low temperatures. II. Aust. J. Phys. 13, 354358 (1960).CrossRefGoogle Scholar
Parkhomenko, T.A. and Pustovalov, V.V.: The low-temperature yield stress anomaly in metals and alloys. Phys. Status Solidi A 74, 1142 (1982).CrossRefGoogle Scholar