Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T22:13:41.787Z Has data issue: false hasContentIssue false

Peak shape analysis of deep level transient spectra: An alternative to the Arrhenius plot

Published online by Cambridge University Press:  12 March 2019

Patrick G. Whiting*
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, USA
Kevin S. Jones
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, USA
Karl D. Hirschman
Affiliation:
Department of Electrical Engineering, Rochester Institute of Technology, Henrietta, New York 14623, USA
Jayantha Senawiratne
Affiliation:
Sullivan Park Science and Technology Center, Corning Incorporated, Erwin, New York 14870, USA
Johannes Moll
Affiliation:
Sullivan Park Science and Technology Center, Corning Incorporated, Erwin, New York 14870, USA
Robert G. Manley
Affiliation:
Sullivan Park Science and Technology Center, Corning Incorporated, Erwin, New York 14870, USA
J. Gregory Couillard
Affiliation:
Sullivan Park Science and Technology Center, Corning Incorporated, Erwin, New York 14870, USA
Carlo A. Kosik Williams
Affiliation:
Sullivan Park Science and Technology Center, Corning Incorporated, Erwin, New York 14870, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A new deep level transient spectroscopy (DLTS) technique is described, called half-width at variable intensity analysis. This method utilizes the width and normalized intensity of a DLTS signal to determine the activation energy and capture cross section of the trap that generated the signal via a variable, kO. This constant relates the carrier emission rates giving rise to the differential capacitance signal associated with a given trap at two different temperatures: the temperature at which the maximum differential capacitance is detected, and an arbitrary temperature at which some nonzero differential capacitance signal is detected. The extracted activation energy of the detected trap center is used along with the position of the peak maximum to extract the capture cross section of the trap center.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lang, D.V.: Deep level transient spectroscopy: A new method for characterize traps in semiconductors. J. Appl. Phys. 45, 3023 (1974).CrossRefGoogle Scholar
Farmer, J.W., Lamp, C.D., and Meese, J.M.: Charge transient spectroscopy. Appl. Phys. Lett. 42, 1063 (1982).CrossRefGoogle Scholar
Johnson, N.M., Bartelink, D.J., Gold, R.B., and Gibbons, J.F.: Constant-capacitance DLTS measurement of defect-density profiles in semiconductors. J. Appl. Phys. 50, 4828 (1979).CrossRefGoogle Scholar
Hurtes, C., Boulou, M., Mitonneau, A., and Bois, D.: Deep-level spectroscopy in high-resistivity materials. Appl. Phys. Lett. 32, 821 (1978).CrossRefGoogle Scholar
Balland, J.C., Zielinger, J.P., Tapiero, M., Gross, J.G., and Noguet, C.: Investigation of deep levels in high-resistivity bulk materials by photo-induced current transient spectroscopy: II. Evaluation of various signal processing methods. J. Phys. D: Appl. Phys. 19, 71 (1986).CrossRefGoogle Scholar
Götz, W., Johnson, N.M., Amano, H., and Akasaki, I.: Deep level defects in N-type GaN. Appl. Phys. Lett. 65, 463 (1994).CrossRefGoogle Scholar
Lang, D.V. and Logan, R.A.: A study of deep levels in GaAs by capacitance spectroscopy. J. Electron. Mater. 5, 1053 (1975).CrossRefGoogle Scholar
Yamasaki, K., Yoshida, M., and Sugano, T.: Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes. Jpn. J. Appl. Phys. 18, 113 (1979).CrossRefGoogle Scholar
Mclarty, P.K., Ioannou, D.E., and Colinge, J-P.: Bulk traps in ultrathin SIMOX MOSFET’s by current DLTS. IEEE Electron Device Lett. 9, 545 (1988).CrossRefGoogle Scholar
Liu, C., Li, X., Geng, H., Rui, E., Yang, J., and Xiao, L.: DLTS studies of bias dependence of defects in silicon NPN bipolar junction transistor irradiated by heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. A 688, 7 (2012).CrossRefGoogle Scholar
Okino, T., Ochiai, M., Ohno, Y., Kishimoto, S., Maezawa, K., and Mizutani, T.: Drain current DLTS of AlGaN-GaN MIS-HEMTs. IEEE Electron Device Lett. 25, 523 (2004).CrossRefGoogle Scholar
Ma, X., Liu, Z-M., Qu, S., Wang, S-R., Hao, R-T., and Liao, H.: A new method to measure trap characteristics of silicon solar cells. Chin. Phys. Lett. 28, 028801 (2011).CrossRefGoogle Scholar
Lang, D.V.: Space charge spectroscopy in semiconductors. Top. Appl. Phys. 37, 93 (2005).CrossRefGoogle Scholar
Zhao, J.H., Lee, J-C., Fang, Z.Q., Schlesinger, T.E., and Milnes, A.G.: Theoretical and experimental determination of deep trap profiles in semiconductors. J. Appl. Phys. 61, 1063 (1987).CrossRefGoogle Scholar
Shockley, W.: Electrons holes and traps in semiconductors. Proc. IRE 46, 973 (1958).CrossRefGoogle Scholar
Goto, H., Adachi, Y., and Ikoma, T.: How to determine parameters of deep levels by DLTS single temperature scanning. Jpn. J. Appl. Phys. 18, 1979 (1979).CrossRefGoogle Scholar
Le Bloa, A., Quan, D.T., and Guennouni, Z.: FTDLTS: A novel isothermal DLTS method using fourier transforms. Meas. Sci. Technol. 4, 325 (1993).CrossRefGoogle Scholar
Peaker, A.R., Markevich, V.P., Hawkins, I.D., Hamilton, B., Bonde Nielsen, K., and Gościński, K.: Laplace deep level transient spectroscopy: Embodiment and evolution. Phys. B 407, 3026 (2012).CrossRefGoogle Scholar
Hanine, M. and Masmoudi, M.: A reliable guideline to maximize the detection and analysis of deep level defects: Comparison between DLTS analysis techniques. Microelectron. J. 37, 1188 (2006).CrossRefGoogle Scholar
Zhao, J.H., Schlesinger, T.E., and Milnes, A.G.: Determination of carrier capture cross-sections of traps by deep level transient spectroscopy. J. Appl. Phys. 62, 2865 (1987).CrossRefGoogle Scholar
Ozder, S., Atilgan, I., and Katircioglu, B.: Temperature dependence of the capture cross section determined by DLTS of a MOS structure. Semicond. Sci. Technol. 10, 1510 (1995).CrossRefGoogle Scholar
Mohapatra, Y.N. and Giri, P.K.: Sensitivity of electrically active defect spectra to processing conditions in MeV heavy ion implanted silicon. Mater. Res. Soc. Symp. Proc. 568, 115120 (1999).CrossRefGoogle Scholar
Felisova, O., Yarykin, N., Yakimov, E., and Weber, J.: Hydrogen interaction with defects in electron irradiated silicon. Phys. B 273, 243 (1999).Google Scholar
Bruni, M., Bisero, D., Tonini, R., Ottaviani, G., Queirolo, G., and Bottini, R.: Electrical studies on H implanted silicon. Phys. Rev. B 49, 5291 (1994).CrossRefGoogle Scholar
Mooney, P.M., Cheng, L.J., Suli, M., Gerson, J.D., and Corbett, J.W.: Defect energy levels in boron doped silicon irradiated with 1-MeV electrons. Phys. Rev. B 15, 3836 (1977).CrossRefGoogle Scholar
Miller, G.L., Lang, D.V., and Kimerling, L.C.: Capacitance transient spectroscopy. Annu. Rev. Mater. Sci. 7, 377 (1977).CrossRefGoogle Scholar
Evwaraye, A.O. and Sun, E.: Electron-irradiation-induced divacancy in lightly doped silicon. J. Appl. Phys. 47, 3776 (1976).CrossRefGoogle Scholar
Rosenberg, J.W., Legodi, M.J., Rakita, Y., Cahen, D., and Diale, M.: Laplace current deep level transient spectroscopy measurements of defect states in methylammonium lead bromide single crystals. J. Appl. Phys. 122, 145701 (2017).CrossRefGoogle Scholar
Heo, S., Seo, G., Lee, Y., Lee, D., Seol, M., Lee, J., Park, J-B., Kim, K., Yun, D-J., Kim, Y.S., Shin, J.K., Ahn, T.K., and Nazeeruddin, M.K.: Deep level trapped defect analysis in CH3NH3PbI3 perovskite solar cells by deep level transient spectroscopy. Energy Environ. Sci. 10, 1128 (2017).CrossRefGoogle Scholar
Whiting, P.G.: Investigation of defects formed by ion implantation of H2+ into silicon. Master's Thesis, RIT, Henrietta (2009). Available at: https://scholarworks.rit.edu/theses/2761/ (accessed January 14, 2019).Google Scholar