Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T01:21:04.747Z Has data issue: false hasContentIssue false

Parameters affecting elastic properties of silica aerogels

Published online by Cambridge University Press:  31 January 2011

T. Woignier
Affiliation:
Laboratoire de Science des Matériaux Vitreux, Université de Montpellier II, 34060 Montpellier Cedex, France
J. Phalippou
Affiliation:
Laboratoire de Science des Matériaux Vitreux, Université de Montpellier II, 34060 Montpellier Cedex, France
R. Vacher
Affiliation:
Laboratoire de Science des Matériaux Vitreux, Université de Montpellier II, 34060 Montpellier Cedex, France
Get access

Abstract

The Young's modulus of silica aerogels is measured, using the three point flexural technique. Various parameters have been investigated, such as the concentration of silicon compounds as well as the catalyting conditions used to develop the initial alcogel and the heat treatment performed to densify the material. The elastic behavior of aerogels depends on the conditions of gel preparation, and the Young's modulus is shown to obey the power dependence E ≃ ρ3.7. This scaling exponent is compared to the percolation model predictions. On the other hand, the elastic behavior of different sets of aerogels is related to the spatial arrangement of the particles pointed out by fractal features.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Gronauer, M.Kadur, A. and Fricke, J.Aerogels (Springer-Verlag), Proceedings in Physics 6, 167(1986).Google Scholar
2Woignier, T.Pelous, J.Phalippou, J.Vacher, R. and Courtens, E.J. Non-Cryst. Solids 95-96, 1197(1987).CrossRefGoogle Scholar
3Courtens, E.Pelous, J.Phalippou, J.Vacher, R. and Woignier, T.Phys. Rev. Lett. 58, 128(1987).CrossRefGoogle Scholar
4Keefer, K.D. and Schaefer, D.W.Phys. Rev. Lett. 56, 2376(1986).CrossRefGoogle Scholar
5Vacher, R.Woignier, T.Pelous, J. and Courtens, E.Phys. Rev. B 37 (11), 6500(1988).CrossRefGoogle Scholar
6Sinha, S.K.Freltoft, T. and Kjems, J. in Kinetics of Aggregation and Gelation, edited by Family, F. and Landau, D. P. (Elsevier, Amsterdam, 1984), p. 87.CrossRefGoogle Scholar
7Chen, S.H. and Teixeira, J.Phys. Rev. Lett. 57, 2583(1976).CrossRefGoogle Scholar
8Stauffer, D.J. Chem. Soc. Faraday Trans. 72, 1354(1972).CrossRefGoogle Scholar
9P.DeGennes, G. J.J. Phys. Lett. France 37, L–l(1976).Google Scholar
10Alexander, S.J. Phys. France 45, 2939(1984).CrossRefGoogle Scholar
11S. , Feng and Sen, P.N.Phys. Rev. Lett. 5, 216(1984).Google Scholar
12Kantor, Y. and Webman, I.Phys. Rev. Lett. 52, 189(1984).CrossRefGoogle Scholar
13Gauthier-Manuel, B. and Guyon, E.J. Phys. Lett. France 41, 503(1980).CrossRefGoogle Scholar
14Tokita, N.Niki, R. and Hikichi, K.J. Chem. Phys. 83, 2583(1985).CrossRefGoogle Scholar
15Adam, M.Delsanti, M.Durand, D.Hild, G. and Munch, J. P.Pure Appl. Chem. 53, 1489(1981).CrossRefGoogle Scholar
16Deutscher, G.Maynard, R. and Parodi, O.Europhysics Letters 6 (1), 49(1988).CrossRefGoogle Scholar
17Essam, J.W.Rep. Prog. Phys. 43, 904(1980).CrossRefGoogle Scholar
18Scherer, G.W.J. Non-Cryst. Solids 100, 77(1988).CrossRefGoogle Scholar
19Prassas, M.Phalippou, J. and Zarzycki, J.Glastechn. Ber. 56K, 542(1983).Google Scholar
20Vacher, R.Woignier, T.Phalippou, J.Pelous, J. and Courtens, E.4th Int. Conf. on Structure of Non-Crystalline Materials, Oxnard (1988), J. Non-Cryst. Solids 106, 161(1988).Google Scholar