Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T04:30:31.509Z Has data issue: false hasContentIssue false

Paramagnetic defects in hydrothermally grown few-layered MoS2 nanocrystals

Published online by Cambridge University Press:  12 June 2018

Luis M. Martinez
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
Chinnathambi Karthik
Affiliation:
Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
Madhu Kongara
Affiliation:
Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA; and Department of Physics, Boise State University, Boise, Idaho 83725, USA
Srinivasa Rao Singamaneni*
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In the recent past, two-dimensional (2D) nanocrystalline (NC) transition metal dichalcogenides such as MoS2 received a great deal of attention due to their extraordinary physical properties. There has been a great interest to study the defects present in MoS2 NCs, which alter the material’s catalytic, electrical, and magnetic properties. This work reports paramagnetic point defects present in the hydrothermally grown 2H–MoS2 NCs. X-band electron spin resonance (ESR) spectroscopy has been used to identify the defects which contain unpaired electron spins in the as-prepared and Ar-annealed MoS2 NCs. At least seven ESR signals were detected originating from four inequivalent paramagnetic defect sites such as adsorbed oxygen species, sulfur vacancies, thio-, and oxo-Mo5+. Upon Ar-annealing, most of these defects did not survive, instead conduction ESR signal was observed. This work signifies the importance of employing ESR spectroscopy and broadens the knowledge in identifying the atomic defects in MoS2 NCs.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kibsgaard, J., Chen, Z., Reinecke, B.N., and Jaramillo, T.F.: Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963 (2012).Google Scholar
Jaramillo, T.F., Jørgensen, K.P., Bonde, J., Nielsen, J.H., Horch, S., and Chorkendorff, I.: Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100 (2007).Google Scholar
Yu, Y., Huang, S-Y., Li, Y., Steinmann, S.N., Yang, W., and Cao, L.: Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 14, 553 (2014).Google Scholar
Hinnemann, B., Moses, P.G., Bonde, J.L., Jørgensen, K.P., Nielsen, J.H., Horch, S., Chorkendorff, I., and Nørskov, J.K.: Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308 (2005).Google Scholar
Wang, H., Tsai, C., Kong, D., Chan, K., Abild-Pedersen, F., Nørskov, J.K., and Cui, Y.: Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 8, 566 (2015).Google Scholar
Liu, G., Robertson, A.W., Li, M.M-J., Kuo, W.C.H., Darby, M.T., Muhieddine, M.H., Lin, Y-C., Suenaga, K., Stamatakis, M., Warner, J.H., and Tsang, S.C.E.: MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 9, 810 (2017).Google Scholar
Mak, K.F., He, K., Lee, C., Lee, G.H., Hone, J., Heinz, T.F., and Shan, J.: Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207 (2013).Google Scholar
Feng, J., Qian, X., Huang, C-W., and Li, J.: Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 6, 866 (2012).Google Scholar
Wilcoxon, J.P., Newcomer, P.P., and Samaraa, G.A.: Synthesis and optical properties of MoS2 and isomorphous nanoclusters in the quantum confinement regime. J. Appl. Phys. 81, 7934 (1997).Google Scholar
Park, J.W., Seob So, H., Kim, S., Choi, S-H., Lee, H., Lee, J., Lee, C., and Kim, Y.: Optical properties of large-area ultrathin MoS2 films: Evolution from a single layer to multilayers. J. Appl. Phys. 116, 183509 (2014).Google Scholar
Addou, R., McDonnell, S., Barrera, D., Guo, Z., Azcatl, A., Wang, J., Zhu, H., Hinkle, C.L., Q-Lopez, M., Alshareef, H.N., Colombo, L., Hsu, J.W.P., and Wallace, R.M.: Impurities and Electronic Property Variations of Natural MoS2 Crystal Surfaces. ACS Nano 9, 9124 (2015).Google Scholar
Tsai, C., Pedersen, F.A., and Nørskov, J.K.: Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 14, 13811387 (2014).Google Scholar
Li, G., Zhang, D., Qiao, Q., Yu, Y., Peterson, D., Zafar, A., Kumar, R., Curtarolo, S., Hunte, F., Shannon, S., Zhu, Y., Yang, W., and Cao, L.: All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 138, 16632 (2016).Google Scholar
Yin, Y., Han, J., Zhang, Y., Zhang, X., Xu, P., Yuan, Q., Samad, L., Wang, X., Wang, Y., Zhang, Z., Zhang, P., Cao, X., Song, B., and Jin, S.: Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 138, 79657 (2016).Google Scholar
Gao, D., Si, M., Li, J., Zhang, J., Zhang, Z., Yang, Z., and Xue, D.: Ferromagnetism in freestanding MoS2 nanosheets. Nanoscale Res. Lett. 8, 129 (2013).CrossRefGoogle ScholarPubMed
Zhang, R., Li, Y., Qi, J., and Gao, D.: Ferromagnetism in ultrathin MoS2 nanosheets: From amorphous to crystalline. Nanoscale Res. Lett. 9, 586 (2014).Google Scholar
Cai, L., He, J., Liu, Q., Yao, T., Chen, L., Yan, W., Hu, F., Jiang, Y., Zhao, Y., Hu, T., Sun, Z., and Wei, S.: Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 137, 2622 (2015).Google Scholar
Lu, S-C. and Leburton, J-P.: Electronic structures of defects and magnetic impurities in MoS2 monolayers. Nanoscale Res. Lett. 9, 676 (2014).Google Scholar
Azizi, A., Wang, Y., Lin, Z., Wang, K., Elias, A.L., Terrones, M., Crespi, V.H., and Alem, N.: Spontaneous formation of atomically thin stripes in transition metal dichalcogenide monolayers. Nano Lett. 16, 6982 (2016).Google Scholar
Azizi, A., Eichfeld, S., Geschwind, G., Zhang, K., Jiang, B., Mukherjee, D., Hossain, L., Piasecki, A.F., Kabius, B., Robinson, J.A., and Alem, N.: Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. ACS Nano 9, 4882 (2015).Google Scholar
Hong, J., Jin, C., Yuan, J., and Zhang, Z.: Atomic defects in two-dimensional materials: From single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater. 29, 1606434 (2017).Google Scholar
Rao, S.S., Stesmans, A., Novyen, J.V., Jacobs, P., and Sels, B.: ESR investigations of ultra-small double walled carbon nanotubes embedded in zeolite nanochannels. J. Phys.: Condens. Matter 23, 455801 (2011).Google Scholar
Rao, S.S., Stesmans, A., Keunen, K., Kosynkin, D.V., Higginbotham, A., and Tour, J.M.: Unzipped graphene nanoribbons as ‘sensitive O2 sensors’—Electron spin resonance probing and dissociation kinetics. Appl. Phys. Lett. 98, 083116 (2011).Google Scholar
Rao, S.S., Stesmans, A., van Tol, J., Kosynkin, D.V., and Tour, J.M.: Magnetic defects in chemically converted graphene nanoribbons: Electron spin resonance investigation. AIP Adv. 4, 047104 (2014).Google Scholar
Rao, S.S., Stesmans, A., van Tol, J., Kosynkin, D.V., Higginbotham-Duque, A., Lu, W., Sinitskii, A., and Tour, J.M.: Spin dynamics and relaxation in graphene nanoribbons: Electron spin resonance probing. ACS Nano 6, 7615 (2012).Google Scholar
Rao, S.S., Narayana Jammalamadaka, S., Stesmans, A., Moshchalkov, V.V., van Tol, J., Kosynkin, D.V., Higginbotham, A., and Tour, J.M.: Ferromagnetism in graphene nanoribbons: Split versus oxidative unzipped ribbons. Nano Lett. 12, 1210 (2012).Google Scholar
Singamaneni, S.R., van Tol, J., Ye, R., and Tour, J.M.: Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots. Appl. Phys. Lett. 107, 212402 (2015).Google Scholar
Panich, A.M., Shames, A.I., Rosentsveig, R., and Tenne, R.: A magnetic resonance study of MoS2 fullerene-like nanoparticles. J. Phys.: Condens. Matter, 21, 395301 (2009).Google Scholar
Stesmans, A., Iacovo, S., Chiappe, D., Radu, I., Huyghebaert, C., De Gendt, S., and Afanas’ev, V.V.: Paramagnetic intrinsic defects in polycrystalline large-area 2D MoS2 films grown on SiO2 by Mo sulfurization. Nanoscale Res. Lett. 12, 283 (2017).Google Scholar
Arcon, D., Zorko, A., Cevc, P., Mrzel, A., Remškar, M., Dominko, R., Gaberšček, M., and Mihailovic, D.: Electron spin resonance of doped chalcogenide nanotubes. Phys. Rev. B 67, 125423 (2003).Google Scholar
Khulber, K.C., Mann, S., and Ternan, M.: Electron spin resonance studies of the surface chemistry of molybdenum-alumina catalysts. Can. J. Chem. 56, 1769 (1978).Google Scholar
Silbernagel, B.G., Pecoraro, T.A., and Chianelli, R.R.: Electron spin resonance of supported and unsupported molybdenum hydrotreating catalysts. J. Catal. 78, 380 (1982).Google Scholar
Bensimon, Y., Belougne, P., Giuntini, J.C., and Zanchetta, J.V.: Electron spin resonance of water adsorption on amorphous molybdenum sulfide. J. Phys. Chem. 88, 2754 (1984).Google Scholar
Deroide, B., Bensimon, Y., Belougne, P., and Zanchetta, J.V.: Lineshapes of ESR signals and the nature of paramagnetic species in amorphous molybdenum sulfides. J. Phys. Chem. Solids 52, 853 (1991); J. Non-Cryst Solids 149, 218 (1992).Google Scholar
Louis, C. and Che, M.: EPR investigation of the coordination sphere of Mo5+ ions on thermally reduced silica-supported molybdenum catalysts prepared by the grafting method. J. Phys. Chem. 91, 2875 (1987).Google Scholar
Gu, W., Yan, Y., Zhang, C., Ding, C., and Xian, Y.: One-Step Synthesis of Water-Soluble MoS2 Quantum Dots via a Hydrothermal Method as a Fluorescent Probe for Hyaluronidase Detection, ACS Appl. Mater. Interfaces, 8, 1127211279 (2016).Google Scholar
Liang, X., Zhang, X., Liu, W., Tang, D., Zhang, B., and Ji, G., A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance, J. Mater. Chem. C 4, 68166821 (2016).Google Scholar
Rao, S.S., Anuradha, K.N., Sarangi, S., and Bhat, S.V.: Weakening of charge order and anti ferromagnetic to ferromagnetic switch over in Pr0.5Ca0.5MnO3 nanowires. Appl. Phys. Lett. 87, 182503 (2005).Google Scholar
Anuradha, K.N., Rao, S.S., and Bhat, S.V.: Complete melting of charge order in hydrothermally grown Pr0.57Ca0.41 Ba0.02MnO3 nanowires. J. Nanosci. Nanotechnol. 7, 1775 (2007).Google Scholar
Ojha, K., Saha, S., Banerjee, S., and Ganguli, A.K.: Efficient electrocatalytic hydrogen evolution from MoS2-functionalized Mo2N nanostructures. ACS Appl. Mater. Interfaces 9, 19455 (2017).Google Scholar
Spevack, P.A. and Mclntyre, N.S.: A Raman and XPS investigation of supported molybdenum oxide thin films. 2. Reactions with hydrogen sulfide. J. Phys. Chem. 97, 11031 (1993).Google Scholar
Zhang, W., Zhou, T., Zheng, J., Hong, J., Pan, Y., and Xu, R.: Water-soluble MoS3 nanoparticles for photocatalytic H2 evolution. ChemSusChem 8, 1464 (2015).Google Scholar
Spevack, P.A. and Mclntyre, N.S.: A Raman and XPS investigation of supported molybdenum oxide thin films. 1. Calcination and reduction studies. J. Phys. Chem. 97, 11020 (1993).Google Scholar
Chiappe, D., Asselberghs, I., Sutar, S., Iacovo, S., Afanas’ev, V., Stesmans, A., Balaji, Y., Peters, L., Heyne, M., Mannarino, M., Vandervorst, W., Sayan, S., Huyghebaert, C., Caymax, M., Heyns, M., De Gendt, S., Radu, I., and Thean, A.: Controlled sulfurization process for the synthesis of large area MoS2 films and MoS2/WS2 heterostructures. Adv. Mater. Interfaces 3, 1500635 (2016).Google Scholar
Spackman, J.W.C.: Electron spin resonance of charge carriers in impure molybdenum disulphide. Nature 198, 1266 (1963).Google Scholar
Brand, F.D., Ribeiro, G.M., Vaz, P.H., González, J.C., and Krambrock, K.: Identification of rhenium donors and sulfur vacancy acceptors in layered MoS2 bulk samples. J. Appl. Phys. 119, 235701 (2016).Google Scholar
Stesmans, A., Iacovo, S., and Afanas’ev, V.V.: ESR study of p-type natural 2H-polytype MoS2 crystals: The as acceptor activity. Appl. Phys. Lett. 109, 172104 (2016).Google Scholar
Konings, A.J.A., van Doormen, A.M., Koningsberger, D.C., De Beer, V.H.J., Farragher, A.L., and Schuit, G.C.A.: ESR studies on hydrodesulfurization catalysts: Supported and unsupported sulfided molybdenum and tungsten catalysts. J. Catal. 54, 1 (1978).Google Scholar
Khulbe, K.C., Mann, R.S., and Ternan, M.: Electron spin resonance of the surface chemistry of molybdenum-alumina catalysts, CAN. J. Chem. 56, 1769 (1978).Google Scholar
Sobczynski, A. and Zmierczak, W.: Characterization of MoS2/SiO2 by ESR and no absorption. React. Kinet. Catal. Lett. 44, 511 (1991).Google Scholar
Supplementary material: File

Martinez et al. supplementary material

Figures S1-S7

Download Martinez et al. supplementary material(File)
File 2.6 MB