Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T22:57:27.811Z Has data issue: false hasContentIssue false

Oxygen transport studies in nanocrystalline ceria films

Published online by Cambridge University Press:  03 March 2011

Laxmikant Saraf*
Affiliation:
W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
C.M. Wang
Affiliation:
W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
V. Shutthanandan
Affiliation:
W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
Y. Zhang
Affiliation:
W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
Olga Marina
Affiliation:
Energy Science and Technology Division, Pacific Northwest National Laboratory, Richland, Washington 99352
D.R. Baer
Affiliation:
Chemical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
S. Thevuthasan
Affiliation:
W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
P. Nachimuthu
Affiliation:
Department of Chemistry, University of Nevada, Las Vegas, Nevada 89154; and Lawrence Berkeley National Laboratory, Berkeley, California 94720
D.W. Lindle
Affiliation:
Department of Chemistry, University of Nevada, Las Vegas, Nevada 89154
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Oxygen uptake and conductivity were measured by nuclear-reaction analysis and alternating current impedance technique at the intermediate temperature range on sol-gel grown nanocrystalline ceria films with average grain-sizes 7 nm and 38 nm synthesized at 723 and 1173 K, respectively. Higher oxygen uptake and lower ionic conductivity were observed in ceria films with ∼7-nm grain size. High permeation-assisted oxygen diffusion in nanocrystallites combined with oxygen trapping in the disordered region contributed to higher oxygen uptake. However, the lower ionic conductivity in the film resulted from the absence of long-range lattice ordering and inactive grain-boundary/surface oxygen vacancy sites due to oxygenation. The relationship between oxygen uptake and conductivity in ceria is discussed in details by considering grain-size dependent defect density, related surface area, and enhanced oxygen mobility.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Goodenough, J.B.: Ceramic technology: Oxide-ion conductors by design. Nature 404, 821 (2000).CrossRefGoogle Scholar
2.Ralph, J.M., Schoeler, A.C. and Krumpelt, M.: Materials for lower temperature solid oxide fuel cells. J. Mater. Sci. 36, 1161 (2001).CrossRefGoogle Scholar
3.Skorodumova, N.V., Simak, S.I., Lundqvist, B.I., Abrikosov, I.A. and Johansson, B.: Quantum origin of the oxygen storage capability of ceria. Phys. Rev. Lett. 89, 166601 (2002).CrossRefGoogle ScholarPubMed
4.Mamontov, E., Egami, T., Brezny, R., Koranne, M. and Tyagi, S.: Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia. J. Phys. Chem. B 104, 11110 (2000).CrossRefGoogle Scholar
5.Xia, C., Zhang, Y. and Liu, M.: LSM-GDC composite cathodes derived from a sol-gel process: Effect of microstructure on interfacial polarization resistance. Electrochem. Solid-State Lett. 6 A290 (2003).CrossRefGoogle Scholar
6.Sasaki, T., Matsumoto, Y., Hombo, J. and Nagata, M.: Electroless deposition of LaMnO3 perovskite film on yttria stabilized zirconia substrate. J. Solid State Chem. 105, 255 (1993).CrossRefGoogle Scholar
7.Wang, H., Song, H., Xia, C., Peng, D. and Meng, G.: Aerosol-assisted MOCVD deposition of YDC thin films on (NiO + YDC) substrates. Mater. Res. Bull. 35, 2363 (2000).CrossRefGoogle Scholar
8.Saitzek, S., Guirleo, G., Guinneton, F., Sauques, L., Villain, S., Aguir, K., Leroux, C. and Gavarri, J.R.: New thermochromic bilayers for optical or electronic switching systems. Thin Solid Films 449, 166 (2004).CrossRefGoogle Scholar
9.Henderson, M.A., Perkins, C.L., Engelhard, M.H., Thevuthasan, S. and Peden, C.H.F.: Redox properties of water on the oxidized and reduced surfaces of CeO2(111). Surf. Sci. 526, 1 (2003).CrossRefGoogle Scholar
10.Hartmanova, M., Gmucova, K. and Thurzo, I.: Dielectric properties of ceria and yttria-stabilized zirconia thin films grown on silicon substrates. Solid State Ionics 130, 105 (2000).CrossRefGoogle Scholar
11.Mädler, L., Stark, W.J. and Pratsinisa, S.E.: Flame-made ceria nanoparticles. J. Mater. Res. 17, 1356 (2002).CrossRefGoogle Scholar
12.Saraf, L.V., Shutthanandan, V., Wang, C.M., Zhang, Y., Marina, O. and Thevuthasan, S.: Oxygen diffusion in nanocrystalline CeO2, in IEEE-NANO 2003 Proceedings (2003).Google Scholar
13.Saraf, L.V., Shutthanandan, V., Thevuthasan, S., Wang, C.M., Koch, K.T., And, J.A.reasen, Marina, O. and Zhang, Y.: Oxygen diffusivity and defect transport in pure and Yb doped nano-crystalline ceria, in Continuous Nanophase and Nanostructured Materials, edited by Kornarneni, S., Parker, J. C., and Watkins, J. J. (Mater. Res. Soc. Symp. Proc. 788, Warrendale, PA, 2004), p. 115.Google Scholar
14.Saraf, L.V., Shutthanandan, V., Zhang, Y., Thevuthasan, S., Wang, C.M., El-Azab, A. and Baer, D.R.: Distinguishibility of oxygen desorption from the surface region with mobility dominant effects in nanocrystalline ceria films. J. Appl. Phys. 96, 5756 (2004).CrossRefGoogle Scholar
15.Nilgun, O.: Optical properties and electrochromic characterization of sol-gel deposited ceria films. Sol. Energy Mater. Sol. Cells 68, 391 (2001).Google Scholar
16.Underwood, J.H. and Gullikson, E.M.: High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50–1300 eV energy region. J. Electron Spectrosc. Relat. Phenom. 92, 265 (1998).CrossRefGoogle Scholar
17.Handbook of Modern Ion Beam Materials Analysis, edited by Tesmer, J.R. and Nastasi, M. (Materials Research Society, Pittsburgh, PA, 1995).Google Scholar
18.Cullity, B.D.: Diffraction I: Directions of diffracted beams, in Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing Co., 1978), Chap. 3, p. 102.Google Scholar
19.Hu, Z., Meier, R., Schüßler-Langeheine, C., Weschke, E., Kaindl, G., Felner, I., Merz, M., Nücker, N., Schuppler, S. and Erb, A.: O-2p holes in tetravalent oxides of Ce and Pr and the Fehrenbacher-Rice hybrid in PrBa2Cu3O7−δ. Phys. Rev. B 60, 1460 (1999).CrossRefGoogle Scholar
20.Nachimuthu, P., Shih, W.C., Liu, R.S., Jang, L.Y. and Chen, J.M.: The study of nanocrystalline cerium oxide by x-ray absorption spectroscopy. J. Solid State Chem. 149, 408 (2000).CrossRefGoogle Scholar
21.Putna, E.S., Vohs, J.M. and Gorte, R.J.: Evidence for weakly bound oxygen on ceria films. J. Phys. Chem. 100, 17862 (1996).Google Scholar
22.Perrichon, V., Laachir, A., Bergeret, G., Ferty, R., Tournayan, L. and Touret, O.: Reduction of cerias with different textures by hydrogen and their reoxidation by oxygen. J. Chem. Soc., Faraday Trans. 1 90, 773 (1994).CrossRefGoogle Scholar
23.Kamiya, M., Shimada, E., Ikuma, Y., Komatsu, M. and Haneda, H.: Intrinsic and extrinsic oxygen diffusion and surface exchange reaction in cerium oxide. J. Electrochem. Soc. 147, 1222 (2000).CrossRefGoogle Scholar
24.Lane, J.A. and Kilner, J.A.: Oxygen surface exchange on gadolinia doped ceria. Solid State Ionics 136–137, 927 (2000).CrossRefGoogle Scholar
25.Manning, P.S., Sirman, J.D. and Kilner, J.A.: Oxygen self-diffusion and surface exchange studies of oxide electrolytes having the fluorite structure. Solid State Ionics 93, 125 (1996).CrossRefGoogle Scholar
26.Huang, K., Schroeder, M. and Goodenough, J.B.: Oxygen permeation through composite oxide-ion and electronic conductors. Electrochem. Solid-State Lett. 2, 375 (1999).CrossRefGoogle Scholar
27.Bakos, T., Rashkeev, S.N. and Pantelides, S.T.: Reactions and diffusion of water and oxygen molecules in amorphous SiO2. Phys. Rev. Lett. 88, 055508 (2002).CrossRefGoogle ScholarPubMed
28.Bongiorno, A. and Pasquarello, A.: Oxygen diffusion through the disordered oxide network during silicon oxidation. Phys. Rev. Lett. 88, 125901 (2002).CrossRefGoogle ScholarPubMed
29.Terribile, D., Llorca, J., Boaro, M., Leitenburg, C., Dolcetti, G. and Trovarelli, A.: Fast oxygen uptake/release over a new CeOx phase. Chem. Commun. 17, 1897 (1998).CrossRefGoogle Scholar
30.Binet, C., Badri, A. and Lavalley, J.C.: A spectroscopic characterization of the reduction of ceria from electronic transitions of intrinsic point defects. J. Phys. Chem. 98, 6392 (1994).Google Scholar
31.Honig, J.M. and Czanderna, A.W.: The composition, resistivity, and thermoelectric power of cerium oxides below 500 °C. Phys. Chem. Solids 6, 96 (1958).Google Scholar
32.Martin, D. and Duprez, D.: Mobility of surface species on oxides. 1. Isotopic exchange of 18O2 with 16O of SiO2, Al2O3, ZrO2, MgO, CeO2, and CeO2–Al2O3. Activation by noble metals. correlation with oxide basicity. J. Phys. Chem. 100, 9429 (1996).CrossRefGoogle Scholar
33.Iguchi, E., Nakamura, S., Munakata, F., Kurumada, M. and Fujie, Y.: Ionic conduction due to oxygen diffusion in La0.8Sr0.2GaO3−d electrolyte. J. Appl. Phys. 93, 3662 (2003).CrossRefGoogle Scholar