Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T20:48:57.526Z Has data issue: false hasContentIssue false

Oxygen exchange kinetics on solid oxide fuel cell cathode materials—general trends and their mechanistic interpretation

Published online by Cambridge University Press:  03 July 2012

Lei Wang
Affiliation:
Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
Rotraut Merkle*
Affiliation:
Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
Yuri A. Mastrikov
Affiliation:
Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany; and University of Maryland, College Park, Maryland 20742-2115
Eugene A. Kotomin
Affiliation:
Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
Joachim Maier
Affiliation:
Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The compilation of measured effective rate constants for oxygen surface exchange on mixed conducting perovskites, which covers a great variety of compositions ranging from (La,Sr)MnO3−δ to (La,Sr)(Co,Fe)O3−δ and (Ba,Sr)(Co,Fe)O3−δ, demonstrates the importance of ionic conductivity—i.e., high oxygen vacancy concentration as well as vacancy mobility—as a key factor for the surface oxygen exchange rate. This interpretation is corroborated by ab initio calculations, which indicate that the approach of an oxygen vacancy to oxygen intermediates adsorbed on the surface is the rate determining step for a number of perovskites.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Merkle, R. and Maier, J.: Oxygen incorporation into Fe-doped SrTiO3: Mechanistic interpretation of the surface reaction. Phys. Chem. Chem. Phys. 4, 4140 (2002).CrossRefGoogle Scholar
2.Merkle, R. and Maier, J.: The significance of defect chemistry for the rate of gas-solid reactions: Three examples. Top. Catal. 38, 41 (2006).CrossRefGoogle Scholar
3.Jung, W.C. and Tuller, H.L.: A new model describing solid oxide fuel cell cathode kinetics: Model thin film SrTi1-xFexO3-δ mixed conducting oxides - a case study. Adv. Energy Mat. 1, 1184 (2011).CrossRefGoogle Scholar
4.Gostovic, D., Smith, J.R., Kundinger, D.P., Jones, K.S., and Wachsman, E.D.: Three-dimensional reconstruction of porous LSCF cathodes. Electrochem. Solid-State Lett. 10, B214 (2007).CrossRefGoogle Scholar
5.Wilson, J.R., Duong, A.T., Gameiro, M., Chen, H-Y., Thornton, K., Mumm, D.R., and Barnett, S.A.: Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode. Electrochem. Commun. 11, 1052 (2009).CrossRefGoogle Scholar
6.la O’, G.J., Ahn, S.J., Crumlin, E., Orikasa, Y., Biegalski, M.D., Christen, H.M., and Shao-Horn, Y.: Catalytic activity enhancement for oxygen reduction on epitaxial perovskite thin films for solid-oxide fuel cells. Angew. Chem. Int. Ed. 49, 5344 (2010).CrossRefGoogle ScholarPubMed
7.Baumann, F.S., Fleig, J., Cristiani, G., Stuhlhofer, B., Habermeier, H-U., and Maier, J.: Quantitative comparison of mixed conducting SOFC cathode materials by means of thin film model electrodes. J. Electrochem. Soc. 154, B931 (2007).CrossRefGoogle Scholar
8.Wang, L., Merkle, R., and Maier, J.: Surface kinetics and mechanism of oxygen incorporation into Ba1−xSrxCoyFe1-yO3-δ SOFC microelectrodes. J. Electrochem. Soc. 157, B1802 (2010).CrossRefGoogle Scholar
9.Wang, L., Merkle, R., Maier, J., Acartürk, T., and Starke, U.: Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3-δ films. Appl. Phys. Lett. 94, 071908 (2009).CrossRefGoogle Scholar
10.Mastrikov, Y.A., Merkle, R., Heifets, E., Kotomin, E.A., and Maier, J.: Pathways for the oxygen incorporation reaction into mixed conducting perovskites: A DFT-based kinetic analysis for (La, Sr)MnO3. J. Phys. Chem. C 114, 3017 (2010).CrossRefGoogle Scholar
11.Merkle, R., Mastrikov, Y.A., Kotomin, E.A., Kuklja, M.M., and Maier, J.: First principles calculations of oxygen vacancy formation and migration in Ba1-xSrxCo1-yFeyO3-δ perovskites. J. Electrochem. Soc. 159, B219 (2012).CrossRefGoogle Scholar
12.De Souza, R.A. and Martin, M.: Using 18O/16O exchange to probe an equilibrium space-charge layer at the surface of a crystalline oxide: Method and application. Phys. Chem. Chem. Phys. 10, 2356 (2008).CrossRefGoogle Scholar
13.Jurado, J.R., Colomer, M.T., and Frade, J.R.: Impedance spectroscopy of Sr0.97Ti1-xFexO3-δ materials with moderate Fe-contents. Solid State Ionics 143, 251 (2001).CrossRefGoogle Scholar
14.Fleig, J., Kim, H-R., Jamnik, J., and Maier, J.: Oxygen reduction kinetics of lanthanum manganite (LSM) model cathodes: Partial pressure dependence and rate-limiting steps. Fuel Cells 8, 330 (2008).CrossRefGoogle Scholar
15.Mizusaki, J., Yonemura, Y., Kamata, H., Ohyama, K., Mori, N., Takai, H., Tagawa, H., Dokiya, M., Naraya, K., Sasamoto, T., Inaba, H., and Hashimoto, T.: Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1-xSrxMnO3. Solid State Ionics 132, 167 (2000).CrossRefGoogle Scholar
16.Mizusaki, J., Tabuchi, J., Matsuura, T., Yamauchi, S., and Fueki, K.: Electrical conductivity and Seebeck coefficient of nonstoichiometric La1-xSrxCoO3-δ. J. Electrochem. Soc. 136, 2082 (1989).CrossRefGoogle Scholar
17.Bongio, E.V., Black, H., Raszewski, F.C., Edwards, D., McConville, C.J., and Amarakoon, V.R.W.: Microstructural and high-temperature electrical characterization of La1-xSrxFeO3-δ. J. Electroceram. 14, 193 (2005).CrossRefGoogle Scholar
18.Chen, Z., Ran, R., Zhou, W., Shao, Z., and Liu, S.: Assessment of Ba0.5Sr0.5Co1−yFeyO3−δ (y = 0.0–1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane. Electrochim. Acta 52, 7343 (2007).CrossRefGoogle Scholar
19.Kozhevnikov, V.L., Leonidov, I.A., Patrakeev, M.V., Mitberg, E.B., and Poeppelmeier, K.R.: Electrical properties of the ferrite SrFeOy at high temperatures. J. Solid State Chem. 158, 320 (2001).CrossRefGoogle Scholar
20.de Souza, R.A. and Kilner, J.A.: Oxygen transport in La1-xSrxMn1-yCoyO3±δ perovskites part II. Oxygen surface exchange. Solid State Ionics 126, 153 (1999).CrossRefGoogle Scholar
21.Fullarton, I.C., Jacobs, J-P., van Benthem, H.E., Kilner, J.A., Brongersma, H.H., Scanlon, P.J., and Steele, B.C.H.: Study of oxygen ion transport in acceptor doped samarium cobalt oxide. Ionics 1, 51 (1995).CrossRefGoogle Scholar
22.Berenov, A.V., Atkinson, A., Kilner, J.A., Bucher, E., and Sitte, W.: Oxygen tracer diffusion and surface exchange kinetics in La0.6Sr0.4CoO3-δ. Solid State Ionics 181, 819 (2010).CrossRefGoogle Scholar
23.Ishigaki, T., Yamauchi, S., Kishio, K., Mizusaki, J., and Fueki, K.: Diffusion of oxide ion vacancies in perovskite-type oxides. J. Solid State Chem. 73, 179 (1988).CrossRefGoogle Scholar
24.Geffroy, P.M., Bassat, J.M., Vivet, A., Fourcade, S., Chartier, T., Del Gallo, P., and Richet, N.: Oxygen semi-permeation, oxygen diffusion and surface exchange coefficient of La1-xSrxFe1-yGayO3-δ perovskite membranes. J. Membr. Sci. 354, 6 (2010).CrossRefGoogle Scholar
25.Rothschild, A., Menesklou, W., Tuller, H.L., and Ivers-Tiffee, E.: Electronic structure, defect chemistry, and transport properties of SrTi1-xFexO3-δ solid solutions. Chem. Mater. 18, 3651 (2006).CrossRefGoogle Scholar
26.van der Haar, L.M., den Otter, M.W., Morskate, M., Bouwmeester, H.J.M., and Verweij, H.: Chemical diffusion and oxygen surface transfer of La1-xSrxCoO3-δ studied with electrical conductivity relaxation. J. Electrochem. Soc. 149, J41 (2002).CrossRefGoogle Scholar
27.Mizusaki, J., Mima, Y., Yamauchi, S., Fueki, K., and Tagawa, H.: Nonstoichiometry of the perovskite-type oxides La1-xSrxCoO3-δ. J. Solid State Chem. 80, 102 (1989).CrossRefGoogle Scholar
28.Yoo, J., Verma, A., Wang, S., and Jacobson, A.J.: Oxygen transport kinetics in SrFeO3-δ, La0.5Sr0.5FeO3-δ, and La0.2Sr0.8Cr0.2Fe0.8O3-δ measured by electrical conductivity relaxation. J. Electrochem. Soc. 152, A497 (2005).CrossRefGoogle Scholar
29.ten Elshof, J.E., Lankhorst, M.H.R., and Bouwmeester, H.J.M.: Oxygen exchange and diffusion coefficients of strontium-doped lanthanum ferrites by electrical conductivity relaxation. J. Electrochem. Soc. 144, 1060 (1997).CrossRefGoogle Scholar
30.Chen, D. and Shao, Z.: Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ mixed conductor. Int. J. Hydrogen Energy 36, 6948 (2011).CrossRefGoogle Scholar
31.Maier, J.: On the correlation of macroscopic and microscopic rate constants in solid state chemistry. Solid State Ionics 112, 197 (1998).CrossRefGoogle Scholar
32.Kilner, J.A., De Souza, R.A., and Fullarton, I.C.: Surface exchange of oxygen in mixed conducting perovskite oxides. Solid State Ionics 86, 703 (1996).CrossRefGoogle Scholar
33.Mosleh, M., Sogaard, M., and Hendriksen, P.V.: Kinetics and mechanism of oxygen surface exchange on La0.6Sr0.4FeO3-δ thin films. J. Electrochem. Soc. 156, B441 (2009).CrossRefGoogle Scholar
34.Fleig, J. and Maier, J.: The polarization of mixed conducting SOFC cathodes: Effects of surface reaction coefficient, ionic conductivity and geometry. J. Eur. Ceram. Soc. 24, 1343 (2004).CrossRefGoogle Scholar
35.Choi, Y.M., Lynch, M.E., Lin, M.C., and Liu, M.L.: Prediction of O2 dissociation kinetics on LaMnO3-based cathode materials for solid oxide fuel cells. J. Phys. Chem. C 113, 7290 (2009).CrossRefGoogle Scholar
36.Piskunov, S., Heifets, E., Jacob, T., Kotomin, E.A., Ellis, D.E., and Spohr, E.: Electronic structure and thermodynamic stability of LaMnO3 and La1-xSrxMnO3 (001) surfaces: Ab initio calculations. Phys. Rev. B, 78, 121406 (2008).CrossRefGoogle Scholar
37.Mastrikov, Y.A., Heifets, E., Kotomin, E.A., and Maier, J.: Atomic, electronic and thermodynamic properties of cubic and orthorhombic LaMnO3 surfaces. Surf. Sci. 603, 326 (2009).CrossRefGoogle Scholar
38.Fleig, J., Merkle, R., and Maier, J.: The p(O2) dependence of oxygen surface coverage and exchange current density of mixed conducting oxide electrodes: Model considerations. Phys. Chem. Chem. Phys. 9, 2713 (2007).CrossRefGoogle Scholar
39.De Souza, R.A. and Kilner, J.A.: Oxygen transport in La1-xSrxMn1-yCoyO3±δ perovskites Part I. Oxygen tracer diffusion. Solid State Ionics 106, 175 (1998).CrossRefGoogle Scholar
40.Mizusaki, J., Yoshihiro, M., Yamauchi, S., and Fueki, K.: Nonstoichiometry and defect structure of the perovskite-type oxides La1-xSrxFeO3-δ. J. Solid State Chem. 58, 257 (1985).CrossRefGoogle Scholar
41.Choi, Y.M., Lin, M.C., and Liu, M.L.: Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations. J. Power Sources 195, 1441 (2010).CrossRefGoogle Scholar
42.Shao, Z. and Haile, S.M.: A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170 (2004).CrossRefGoogle ScholarPubMed
43.Baumann, F.S., Fleig, J., Habermeier, H-U., and Maier, J.: Ba0.5Sr0.5Co0.8Fe0.2O3−δ thin film microelectrodes investigated by impedance spectroscopy. Solid State Ionics 177, 3187 (2006).CrossRefGoogle Scholar
44.Deng, Z.Q., Yang, W.S., Liu, W., and Chen, C.S.: Relationship between transport properties and phase transformation in mixed-conducting oxides. J. Solid State Chem. 179, 362 (2006).CrossRefGoogle Scholar
45.Yakovlev, S., Yoo, C-Y., Fang, S., and Bouwmeester, H.J.M.: Phase transformation and oxygen equilibration kinetics of pure and Zr-doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite oxide probed by electrical relaxation. Appl. Phys. Lett. 96, 254101 (2011).CrossRefGoogle Scholar
46.Jung, J-I., Misture, S.T., and Edwards, D.D.: Oxygen stoichiometry, electrical conductivity, and thermopower measurements of BSCF (Ba0.5Sr0.5CoxFe1-xO3-δ, 0 ≤ x ≤ 0.8) in air. Solid State Ionics 181, 1287 (2010).CrossRefGoogle Scholar
47.Bucher, E., Sitte, W., Caraman, G.B., Cherepanov, V.A., Aksenova, T.V., and Ananyev, M.V.: Defect equilibria and partial molar properties of (La, Sr)(Co, Fe)O3−δ. Solid State Ionics 177, 3109 (2006).CrossRefGoogle Scholar
48.Burriel, M., Niedrig, C., Menesklou, W., Wagner, S.F., Santiso, J., and Ivers-Tiffee, E.: BSCF epitaxial thin films: Electrical transport and oxygen surface exchange. Solid State Ionics 181, 602 (2010).CrossRefGoogle Scholar
49.Bouwmeester, H.J.M., Song, C., Zhu, J., Yi, J., van Sint Annaland, M., and Boukamp, B.A.: A novel pulse isotopic exchange technique for rapid determination of the oxygen surface exchange rate of oxide ion conductors. Phys. Chem. Chem. Phys. 11, 9640 (2009).CrossRefGoogle ScholarPubMed
50.Merkle, R., Maier, J., and Bouwmeester, H.J.M.: A linear free energy relationship for gas-solid interactions: Correlation between surface rate constant and diffusion coefficient of oxygen tracer exchange for electron-rich perovskites. Angew. Chem. Int. Ed. 43, 5069 (2004).CrossRefGoogle ScholarPubMed
51.De Souza, R.A.: A universal empirical expression for the isotope surface exchange coefficients (k*) of acceptor-doped perovskite and fluorite oxides. Phys. Chem. Chem. Phys. 8, 890 (2006).CrossRefGoogle ScholarPubMed
52.Lee, Y-L., Kleis, J., Rossmeisl, J., Shao-Horn, Y., and Morgan, D.: Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4, 3966 (2011).CrossRefGoogle Scholar
53.Pavone, M., Ritzmann, A.M., and Carter, E.A.: Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials. Energy Environ. Sci. 4, 4933 (2011).CrossRefGoogle Scholar
54.Svarcova, S., Wiik, K., Tolchard, J., Bouwmeester, H.J.M., and Grande, T.: Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3-δ. Solid State Ionics 178, 1787 (2008).CrossRefGoogle Scholar
55.Kuklja, M.M., Mastrikov, Y.A., Jansang, B., and Kotomin, E.A.: Intrinsic defects, disordering, and structural stability of BaxSr1-xCoyFe1-yO3-δ perovskite solid solutions. J. Phys. Chem. C (2012, submitted).CrossRefGoogle Scholar
56.Tarancon, A., Skinner, S.J., Chater, R.J., Hernendez-Ramirez, F., and Kilner, J.A.: Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 17, 3175 (2007).CrossRefGoogle Scholar
57.Burriel, M., Garcia, G., Santiso, J., Kilner, J.A., Chater, R.J., and Skinner, S.J.: Anisotropic oxygen diffusion properties in epitaxial thin films of La2NiO4+δ. J. Mater. Chem. 18, 416 (2008).CrossRefGoogle Scholar
58.Parfitt, D., Chroneos, A., Kilner, J.A., and Grimes, R.W.: Molecular dynamics study of oxygen diffusion in Pr2NiO4+δ. Phys. Chem. Chem. Phys. 12, 6834 (2010).CrossRefGoogle Scholar
59.Sase, M., Yashiro, K., Sato, K., Mizusaki, J., Kawada, T., Sakai, N., Horita, T., and Yokokawa, H.: Enhancement of oxygen exchange at the hetero interface of (La, Sr)CoO3/(La, Sr)2CoO4 in composite ceramics. Solid State Ionics 178, 1843 (2008).CrossRefGoogle Scholar
60.Crumlin, E.J., Mutoro, E., Ahn, S.J., la O’, G.J., Leonard, D.N., Borisevich, A., Biegalski, M.D., Christen, H.M., and Shao-Horn, Y.: Oxygen reduction kinetics enhancement on a heterostructured oxide surface for solid oxide fuel cells. J. Phys. Chem. Lett. 1, 3149 (2010).CrossRefGoogle Scholar
61.Han, J.W. and Yildiz, B.: Enhanced one dimensional mobility of oxygen on strained LaCoO3(001) surface. J. Mater. Chem. 21, 18983 (2011).CrossRefGoogle Scholar
62.Adler, S.B., Chen, X.Y., and Wilson, J.R.: Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces. J. Catal. 245, 91 (2007).CrossRefGoogle Scholar