Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T16:29:55.573Z Has data issue: false hasContentIssue false

Oxide nanodot arrays templated from polymer nano-channels via a novel vapor-transport-assisted wet chemistry process

Published online by Cambridge University Press:  31 January 2011

Yi-Feng Lin
Affiliation:
Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30013, Republic of China
Wen-Hsien Tseng
Affiliation:
Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30013, Republic of China
Hong-Zhi Luan
Affiliation:
Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30013, Republic of China
Liang-Yu Chen
Affiliation:
Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30013, Republic of China
Shih-Yuan Lu*
Affiliation:
Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30013, Republic of China
Rong-Ming Ho
Affiliation:
Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30043, Republic of China; and Material and Chemical Research Laboratories, ITRI, Hsin-Chu, Taiwan 30013, Republic of China
*
Address all correspondence to these authors: a)e-mail: [email protected]
Get access

Abstract

A novel vapor-transport-assisted wet chemistry process was developed to fabricate oxide nanodot arrays from soft polymer templates. The feasibility and wide applicability of the proposed process was demonstrated with creation of high-density oxide nanodot arrays of TiO2, ZnO, and Co3O4. The present process not only avoids the over-growth problem inevitable in wet chemistry processes but also enables formation of oxide nanodots at low temperatures. The process can be readily extended to other compound systems in which the products can be formed through reactions of two reactants, one in liquid phase and the other in vapor phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Park, C., Yoon, J.Thomas, E.L.: Enabling nanotechnology with self assembled block copolymer patterns. Polymer 44, 6725 2003CrossRefGoogle Scholar
2Park, J.H., Khandekar, A.A., Park, S.M., Mawst, L.J., Kuech, T.F.Nealey, P.F.: Selective MOCVD growth of single-crystal dense GaAs quantum dot array using cylinder-forming diblock copolymers. J. Cryst. Growth 297, 283 2006CrossRefGoogle Scholar
3Ogawa, T., Takahashi, Y., Yang, H., Kimura, K., Sakurai, M.Takahashi, M.: Fabrication of Fe3O4 nanoparticle arrays via patterned template assisted self-assembly. Nanotechnology 17, 5539 2006CrossRefGoogle ScholarPubMed
4Liu, S.M., Gan, L.M., Liu, L.H., Zhang, W.D.Zeng, H.C.: Synthesis of single-crystalline TiO2 nanotubes. Chem. Mater. 14, 1391 2002CrossRefGoogle Scholar
5Weng, C-C., Hsu, K-F.Wei, K-H.: Synthesis of arrayed, TiO2 needlelike nanostructures via a polystyrene-block-poly(4-vinylpyridine). Diblock copolymer template. Chem. Mater. 16, 4080 2004CrossRefGoogle Scholar
6Boschloo, G.Hagfeldt, A.: Activation energy of electron transport in dye-sensitized TiO2 solar cells. J. Phys. Chem. B 109, 12093 2005CrossRefGoogle ScholarPubMed
7Liu, S-C.Wu, J-J.: Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si (100). J. Mater. Chem. 12, 3125 2002CrossRefGoogle Scholar
8Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R.Yang, P.: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 2001CrossRefGoogle ScholarPubMed
9Liu, C., Zapien, J.A., Yao, Y., Meng, X., Lee, C.S., Fan, S., Lifshitz, Y.Lee, S.T.: High-density, ordered ultraviolet light-emitting ZnO nanowire arrays. Adv. Mater. 15, 838 2003CrossRefGoogle Scholar
10Park, W.I., Kim, J.S., Yi, G-C.Lee, H-J.: ZnO nanorod logic circuits. Adv. Mater. 17, 1393 2005CrossRefGoogle ScholarPubMed
11Wan, Q., Li, Q.H., Chen, Y.J., Wang, T.H., He, X.L., Li, J.P.Lin, C.L.: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654 2004CrossRefGoogle Scholar
12He, T., Chen, D., Jiao, X., Wang, Y.Duan, Y.: Solubility-controlled synthesis of high-quality Co3O4 nanocrystals. Chem. Mater. 17, 4023 2005CrossRefGoogle Scholar
13Ho, R-M., Tseng, W-H., Fan, H-W., Chiang, Y-W., Lin, C-C., Ko, B-T.Huang, B-H.: Solvent-induced microdomain orientation in polystyrene-b-poly(L-lactide) diblock copolymer thin films for nanopatterning. Polym. 46, 9362 2005CrossRefGoogle Scholar
14Kim, D.H., Jia, X., Lin, Z., Guarini, K.W.Russell, T.P.: Growth of silicon oxide in thin film block copolymer scaffolds. Adv. Mater. 16, 702 2004CrossRefGoogle Scholar
15Kim, D.H., Kim, S.H., Lavery, K.Russell, T.P.: Inorganic nanodots from thin films of block copolymers. Nano Lett. 4, 1841 2004CrossRefGoogle Scholar
16Wang, C-C.Ying, J.Y.: Sol-Gel synthesis and hydrothermal processing of natase and rutile titania nanocrystals. Chem. Mater. 11, 3113 2005CrossRefGoogle Scholar
17Lu, S-Y., Chang, C-H., Yu, C-H., Chen, H-L.Lo, Y.H.: Titania nano-network film templated from microphase-separated block copolymer and its photocatalysis in fractured form. J. Mater. Res. 20, 1523 2005CrossRefGoogle Scholar
18Andeen, D., Loeffler, L., Padture, N.Lange, F.F.: Crystal chemistry of epitaxial ZnO on (1 1 1) MgAl2O4 produced by hydrothermal synthesis. J. Cryst. Growth 259, 103 2003CrossRefGoogle Scholar
19Zhao, X., Jia, Z.Wang, Y.: Clean synthesis of propylene carbonate from urea and 1,2-propylene glycol over zinc-iron double oxide catalyst. J. Chem. Technol. Biotechnol. 81, 794 2006CrossRefGoogle Scholar
20Zapata, B., Bosch, P., Valenzuela, M.A., Fetter, G., Flores, S.O.Cordova, I.R.: Thermal stability of monometallic Co-hydrotalcite. Mater. Lett. 57, 679 2002CrossRefGoogle Scholar
21Xu, R.Zeng, H.C.: Mechanistic investigation on salt-mediated formation of free-standing Co3O4 nanocubes at 95 °C. J. Phys. Chem. B 107, 926 2003CrossRefGoogle Scholar
22Ma, G., Zhou, S.Huang, S.: Microwave hydrothermal synthesis and characterization of Co3O4 nanocrystals. Int. J. Mod. Phys. B 19, 2841 2005CrossRefGoogle Scholar
23Kuo, C-Y.Lu, S-Y.: Immobilization and photocatalytic efficiency of titania nanoparticles on silica carrier spheres. J. Mater. Res. 21, 2290 2006CrossRefGoogle Scholar
24Levin, E.M.McMurdie, H.F.: Metal oxide systems in Phase Diagrams for Ceramists edited by M.K. Reser The American Ceramic Society Columbus, OH 1975 Fig. 4150-4999 76Google Scholar