Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T20:47:18.222Z Has data issue: false hasContentIssue false

Oxidation of nanocrystalline Mo–Si–N and nanolayered Mo–Si–N/SiC coatings

Published online by Cambridge University Press:  31 January 2011

P. Torri
Affiliation:
Accelerator Laboratory, P.O. Box 9 (Siltavuorenpenger 20 M), FIN-00014 University of Helsinki, Finland
Get access

Abstract

Oxidation of sputter-deposited nanocrystalline Mo–Si–N (MoSi2.2N2.5) coatings in oxygen–water vapor atmosphere has been studied in the temperature range 400–850 °C. In addition, the oxidation properties of nanolayered Mo–Si–N/SiC coatings at 700 °C were studied and compared to those of single-layer coatings of both components. No pest disintegration was observed in Mo–Si–N up to 200 h of oxidation. A preexponential rate constant of (3.7 ± 0.5) × 109 (1015 atoms/cm2)2/h and activation energy 1.03 ± 0.02 eV were determined from an Arrhenius plot for parabolic oxygen buildup on Mo–Si–N. Up to 20% less oxygen was detected in the oxidized nanolayered coatings compared to either of the components as a single layer, indicating an improvement in oxidation resistance.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Petrovic, J.J., MRS Bull. XVIII(7), 35 (1993).CrossRefGoogle Scholar
2.Petrovic, J.J. and Vasudevan, A.K., in High-Temperature Silicides and Refractory Alloys, edited by Briant, C.L., Petrovic, J.J., Bewlay, B.P., Vasudevan, A.K., and Lipsitt, H.A. (Mater. Res. Soc. Symp. Proc. 322, Pittsburgh, PA, 1994), p. 3.Google Scholar
3.Vasudevan, A.K. and Petrovic, J.J., Mater. Sci. Eng. A155, 1 (1992).CrossRefGoogle Scholar
4.Kircher, T.A. and Courthright, E.L., Mater. Sci. Eng. A155, 67 (1992).CrossRefGoogle Scholar
5.Grabke, H.J. and Meier, G.H., Oxid. Met. 44(1/2), 147 (1995).CrossRefGoogle Scholar
6.Berztiss, D.A., Pettit, F.S., and Meier, G.H., in High-Temperature Ordered Intermetallic Alloys VI, edited by Horton, J., Hanada, S., Bake, I., Noebe, R.D., and Schwartz, D. (Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, PA, 1995), p. 1285.Google Scholar
7.Berztiss, D.A., Cerchiara, R.R., Gulbransen, E.A., Pettit, F.S., and Meier, G.H., Mater. Sci. Eng. A155, 165 (1992).CrossRefGoogle Scholar
8.Meschter, P.J., Met. Trans. 23A, 1763 (1992).CrossRefGoogle Scholar
9.Meschter, P.J., Scr. Metall. 25, 521 (1991).CrossRefGoogle Scholar
10.Lu, T.C., Evans, A.G., Hecht, R.J., and Mehrabian, R., Acta Metall. 39, 1853 (1991).CrossRefGoogle Scholar
11.Castro, R.G., Smith, R.W., Rollet, A.D., and Stanek, P., Scr. Metall. 26, 207 (1992).CrossRefGoogle Scholar
12.Jeng, Y-L., Wolfenstine, J., and Lavernia, E.J., Scr. Metall. 28, 458 (1993).Google Scholar
13.Cook, J., Khan, A., Lee, E., and Mahapatra, R., Mater. Sci. Eng. A155, 183 (1992).CrossRefGoogle Scholar
14.Gedenvanishvili, S. and Munir, Z.A., Scr. Metall. 31(6), 741 (1994).CrossRefGoogle Scholar
15.Henager, C.H. and Brimhall, J.L., Scr. Metall. 26, 585 (1992).CrossRefGoogle Scholar
16.Meschter, P.J., Scr. Metall. 25, 1065 (1991).CrossRefGoogle Scholar
17.Lu, G-Y., Lederich, R., and Soboyejo, W., Mater. Sci. Eng. A210, 25 (1996).CrossRefGoogle Scholar
18.Miller, P.D., Lee, J.G., and Cutler, I.B., J. Am. Ceram. Soc. 62, 147 (1979).CrossRefGoogle Scholar
19.Kung, H., Jervis, T.R., Hirvonen, J-P., Embury, J.D., Mitchell, T.E., and Nastasi, M., Philos. Mag. A 71, 759 (1995).CrossRefGoogle Scholar
20.Hirvonen, J-P., Torri, P., Lappalainen, R., Likonen, J., Kung, H., Jervis, T.R., and Nastasi, M., J. Mater. Res. 13, 965 (1998).CrossRefGoogle Scholar
21.Kung, H., Jervis, T.R., Hirvonen, J-P., Mitchell, T.E., and Nastasi, M., J. Vac. Sci. Technol. B. 13(3), 1126 (1995).CrossRefGoogle Scholar
22.Lu, K., Mater. Sci. Eng. R16, 161 (1996).CrossRefGoogle Scholar
23.Lappalainen, R., Pannikkat, A., and Raj, R., Acta Metall. Mater. 41, 1229 (1993).CrossRefGoogle Scholar
24.Greer, A.L. in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, edited by Nastasi, M., Parkin, D.M., and Gleiter, H. (Kluwer Academic Publishers, Dordrecht, Netherlands, 1993).Google Scholar
25.Hirvonen, J-P., Suni, I., Kattelus, H., Lappalainen, R., Torri, P., Kung, H., Jervis, T.R., Nastasi, M., and Tesmer, J.R., Surf. Coat. Technol. 74–75, 981 (1995).CrossRefGoogle Scholar
26.Torri, P., Hirvonen, J-P., Kung, H., Lu, Y-C., Nastasi, M., and Gibson, P.N., J. Vac. Sci. Technol. B 17(4), 1329 (1999).CrossRefGoogle Scholar
27.Govindarajan, S., Moore, J.J., Ohno, T.R., and Disam, J., Surf. Coat. Technol. 94–95, 7 (1997).CrossRefGoogle Scholar
28.Jokinen, J., Keinonen, J., Tikkanen, P., Kuronen, A., Ahlgren, T., and Nordlund, K., Nucl. Instrum. Methods B 119, 533 (1996).CrossRefGoogle Scholar
29.Ramberg, C.E., M.S. Thesis, The Pennsylvania State University (1992).Google Scholar
30.Ramberg, C.E., Beatrice, P., Kurokawa, K., and Worrel, W.L., in High-Temperature Silicides and Refractory Alloys, edited by Briant, C.L., Petrovic, J.J., Bewlay, B.P., Vasudevan, A.K., and Lipsitt, H.A. (Mater. Res. Soc. Symp. Proc. 322, Pittsburgh, PA, 1994), p. 243.Google Scholar
31.Larsson, M., Bromark, M., Hedenqvist, P., and Hogmark, S., Surf. Coat. Technol. 76–77, 202 (1995).CrossRefGoogle Scholar