Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T07:38:04.402Z Has data issue: false hasContentIssue false

Oxidation behavior of in situ synthesized (TiB + TiC)/Ti–6Al–4V composites from Ti–B4C–C and Ti–TiB2–TiC systems

Published online by Cambridge University Press:  19 March 2019

Meng Yi
Affiliation:
School of Mechanical and Electrical Engineering, Xinyu University, Xinyu 338000, China; School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; and Research Institute of Precision Casting Forging Industry, Xinghua 225714, China
Xiangzhao Zhang
Affiliation:
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Chuanxin Ge
Affiliation:
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Guiwu Liu*
Affiliation:
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; and School of Mechanical and Electrical Engineering, Xinyu University, Xinyu 338000, China
Shunjian Xu*
Affiliation:
School of Mechanical and Electrical Engineering, Xinyu University, Xinyu 338000, China
Demin Zhong
Affiliation:
School of Mechanical and Electrical Engineering, Xinyu University, Xinyu 338000, China
Guanjun Qiao
Affiliation:
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

The oxidation behavior of two percentages of TiB + TiC reinforced Ti–6Al–4V composites derived from Ti–B4C–C and Ti–TiB2–TiC systems was investigated at 873–1073 K for 320 h in air. The oxidation weight gain curves of the (TiB + TiC)/Ti–6Al–4V composites at 973 K basically obey parabolic law, while those at 873 and 1073 K mainly follow linear law and parabolic-linear law, respectively. The oxide layers of the composites are predominately found to be rutile TiO2, Al2O3, and the mixture of V2O3 and V2O5. The oxidation layers turn thinner with increasing the nominal volume fraction of reinforcements in the (TiB + TiC)/Ti–6Al–4V composites. Moreover, according to the calculation results of reaction index (n) and effective activation energy (Qeff) and the analyses of cross-sections of the oxidation layers, the oxidation resistance ability of the composites from Ti–TiB2–TiC system is higher than that from Ti–B4C–C system while employing the same sintering temperature and nominal volume fraction of reinforcement.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tjong, S.C. and Mai, Y.W.: Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites. Compos. Sci. Technol. 68, 583 (2008).CrossRefGoogle Scholar
Huang, L.J., Geng, L., Peng, H.X., and Zhang, J.: Room temperature tensile fracture characteristics of in situ TiBw/Ti6Al4V composites with a quasi-continuous network architecture. Scr. Mater. 64, 844 (2011).CrossRefGoogle Scholar
Sen, I., Tamirisakandala, S., Miracle, D.B., and Ramamurty, U.: Microstructural effects on the mechanical behavior of B-modified Ti–6Al–4V alloys. Acta Mater. 55, 4983 (2007).CrossRefGoogle Scholar
Boehlert, C.J., Tamirisakandala, S., Curtin, W.A., and Miracle, D.B.: Assessment of in situ TiB whisker tensile strength and optimization of TiB-reinforced titanium alloy design. Scr. Mater. 61, 245 (2009).CrossRefGoogle Scholar
Sun, X.L., Han, Y.F., Cao, S.C., Qiu, P.K., and Lu, W.J.: Rapid in situ reaction synthesis of novel TiC and carbon nanotubes reinforced titanium matrix composites. J. Mater. Sci. Technol. 33, 1165 (2017).CrossRefGoogle Scholar
Li, S.F., Kondoh, K.S., Imai, H.S., Chen, B., Jia, L., Umeda, J.K., and Fu, Y.B.: Strengthening behavior of in situ-synthesized (TiC–TiB)/Ti composites by powder metallurgy and hot extrusion. Mater. Des. 95, 127 (2016).Google Scholar
Qiu, P.K., Li, H., Sun, X.L., Han, Y.F., Huang, G.F., Lu, W.J., and Zhang, D.: Reinforcements stimulated dynamic recrystallization behavior and tensile properties of extruded (TiB + TiC + La2O3)/Ti6Al4V composites. J. Alloys Compd. 699, 874 (2017).CrossRefGoogle Scholar
Luo, X., Zhu, Y.R., Yang, Y.Q., Huang, B., Jin, N., Xu, J.J., and Zhang, M.X.: Effect of quenching on the matrix microstructure of SiCf/Ti–6Al–4V composites. J. Mater. Sci. 53, 1922 (2018).CrossRefGoogle Scholar
Ma, Z.Y., Mishra, R.S., and Tjong, S.C.: High-temperature creep behavior of TiC particulate reinforced Ti–6Al–4V alloy composite. Acta Mater. 50, 4293 (2002).CrossRefGoogle Scholar
Andrieux, J., Gardiola, B., and Dezellus, O.: Synthesis of Ti matrix composites reinforced with TiC particles: In situ synchrotron X-ray diffraction and modeling. J. Mater. Sci. 53, 9533 (2018).CrossRefGoogle Scholar
Ma, F.C., Wang, C.H., Liu, P., Li, W., Liu, X.K., Chen, X.H., Zhang, K., and Han, Q.Y.: Microstructure and mechanical properties of Ti matrix composite reinforced with 5 vol% TiC after various thermo-mechanical treatments. J. Alloys Compd. 758, 78 (2018).CrossRefGoogle Scholar
Wanjara, P., Drew, R.A.L., Root, J., and Yue, S.: Evidence for stable stoichiometric Ti2C at the interface in TiC particulate reinforced Ti alloy composites. Acta Mater. 48, 1443 (2000).CrossRefGoogle Scholar
Namini, A.S. and Azadbeh, M.: Microstructural characterisation and mechanical properties of spark plasma-sintered TiB2-reinforced titanium matrix composite. Powder Metall. 60, 22 (2017).CrossRefGoogle Scholar
Zhang, W.C., Wang, M.M., Chen, W.Z., Feng, Y.J., and Yu, Y.: Preparation of TiBw/Ti–6Al–4V composite with an inhomogeneous reinforced structure by a canned hot extrusion process. J. Alloys Compd. 669, 79 (2016).CrossRefGoogle Scholar
Ma, F.C., Lu, S.Y., Liu, P., Li, W., Liu, X.K., Chen, X.H., Zhang, K., Pan, D., Lu, W.J., and Zhang, D.: Microstructure and mechanical properties variation of TiB/Ti matrix composite by thermo-mechanical processing in beta phase field. J. Alloys Compd. 695, 1515 (2017).CrossRefGoogle Scholar
Jiao, Y., Huang, L.J., and Geng, L.: Progress on discontinuously reinforced titanium matrix composites. J. Alloys Compd. 767, 1196 (2018).CrossRefGoogle Scholar
Attara, H., Ehtemam-Haghighi, S., Kent, D., and Dargusch, M.S.: Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review. Int. J. Mach. Tool Manuf. 133, 85 (2018).CrossRefGoogle Scholar
Gorsse, S. and Miracle, D.B.: Mechanical properties of Ti–6Al–4V/TiB composites with randomly oriented and aligned TiB reinforcements. Acta Mater. 51, 2427 (2003).CrossRefGoogle Scholar
Qin, Y.L., Geng, L., and Ni, D.R.: Dry sliding wear behavior of extruded titanium matrix composite reinforced by in situ TiB whisker and TiC particle. J. Mater. Sci. 46, 4980 (2011).CrossRefGoogle Scholar
Rahoma, H.K.S., Chen, Y.Y., Wang, X.P., and Xiao, S.L.: Influence of (TiC + TiB) on the microstructure and tensile properties of Ti-B20 matrix alloy. J. Alloys Compd. 627, 415 (2015).CrossRefGoogle Scholar
Wang, X., Wang, L., Luo, L.S., Yan, H., Li, X.Z., Chen, R.R., Su, Y.Q., Guo, J.J., and Fu, H.Z.: High temperature deformation behavior of melt hydrogenated (TiB + TiC)/Ti–6Al–4V composites. Mater. Des. 121, 335 (2017).CrossRefGoogle Scholar
Qin, Y.X., Lu, W.J., Xu, D., and Zhang, D.: High-temperature OM investigation of the early stage of (TiC + TiB)/Ti oxidation. J. Mater. Sci. 40, 687 (2005).CrossRefGoogle Scholar
Lu, W.J., Zhang, D., Zhang, X.N., Wu, R.J., Sakata, T., and Mori, H.: Microstructure and tensile properties of in situ (TiB + TiC)/Ti6242 (TiB:TiC=1:1) composites prepared by common casting technique. Mater. Sci. Eng., A 311, 142 (2001).CrossRefGoogle Scholar
Zhang, X.N., Lu, W.J., Zhang, D., Wu, R.J., Bian, Y.J., and Fang, P.W.: In situ technique for synthesizing (TiB + TiC)–Ti composites. Scr. Mater. 41, 39 (1999).CrossRefGoogle Scholar
Qin, Y.X., Zhang, D., Lu, W.J., Qin, J.N., and Xu, D.: Oxidation behavior of in situ synthesized TiB/Ti–Al composite. J. Mater. Sci. 40, 6553 (2005).CrossRefGoogle Scholar
Zhang, X.N., Li, C., Li, X.C., and He, L.J.: Oxidation behavior of in situ synthesized TiC/Ti–6Al composite. Mater. Lett. 57, 3234 (2003).CrossRefGoogle Scholar
Barin, L.: Thermochemical Data of Pure Substances, 3rd ed. (Wiley-VCH Verlag GmbH, Weinheim, 1995).CrossRefGoogle Scholar
Wei, D.B., Zhang, P.Z., Yao, Z.J., Liang, W.P., Miao, Q., and Xu, Z.: Oxidation of double-glow plasma chromising coating on TC4 titanium alloys. Corros. Sci. 66, 43 (2013).CrossRefGoogle Scholar
Castaldi, L., Kurapov, D., Reiter, A., Shkover, V., Schwaller, P., and Patscheider, J.: High temperature phase changes and oxidation behavior of Cr–Si–N coatings. Surf. Coat. Technol. 202, 781 (2007).CrossRefGoogle Scholar
Yang, W.S., Xiu, Z.Y., Wang, X., Liu, Y.M., Chen, G.Q., and Wu, G.H.: Microstructure evolution and oxidation behaviour of Tif/TiAl3 composites. Mater. Des. 32, 207 (2011).CrossRefGoogle Scholar
Lee, D.B., Kim, M.H., Yang, C.W., Lee, S.H., Yang, M.H., and Kim, Y.J.: The oxidation of TiB2 particle-reinforced TiAl intermetallic composites. Oxid. Met. 56, 215 (2001).CrossRefGoogle Scholar
Liu, Y.B., Liu, Y., Zhao, Z.W., Chen, Y.H., and Tang, H.P.: Effect of addition of metal carbide on the oxidation behaviors of titanium matrix composites. J. Alloys Compd. 599, 188 (2014).Google Scholar
Zhang, E.L., Zeng, G., and Zeng, S.Y.: Effect of in situ TiB short fibre on oxidation behavior of Ti–6Al–1.2B alloy. Scr. Mater. 46, 811 (2002).CrossRefGoogle Scholar
Li, Z., Gao, W., Liang, J., and Zhang, D.L.: Oxidation behaviour of Ti3Al–TiC composites. Mater. Lett. 57, 1970 (2003).CrossRefGoogle Scholar
Du, H.L., Datta, P.K., Lewls, D.B., and Burnell-Gray, J.S.: Air oxidation behaviour of Ti–6Al–4V alloy between 650 and 850 °C. Corros. Sci. 36, 631 (1994).CrossRefGoogle Scholar
Yang, Z.F., Lu, W.J., Qin, J.N., and Zhang, D.: Oxidation behavior of in situ synthesized (TiC + TiB + Nd2O3)/Ti composites. Mater. Sci. Eng., A 472, 187 (2008).CrossRefGoogle Scholar
Hu, H.T., Huang, L.J., Geng, L., Liu, B.X., and Wang, B.: Oxidation behavior of TiB-whisker-reinforced Ti60 alloy composites with three-dimensional network architecture. Corros. Sci. 85, 7 (2014).Google Scholar
Zhang, E.L., Zeng, G., and Zeng, S.Y.: Oxidation behavior of in situ TiB short fibre reinforced Ti–6Al–1.2B alloy in air. J. Mater. Sci. 37, 4063 (2002).CrossRefGoogle Scholar
Qin, Y.X., Zhang, D., Lu, W.J., and Pan, W.: Oxidation behavior of in situ-synthesized (TiB + TiC)/Ti6242 composites. Oxid. Met. 66, 253 (2006).CrossRefGoogle Scholar
Qin, Y.X., Zhang, D., Lu, W.J., and Pan, W.: Oxidation behavior of in situ synthesized (TiB + TiC)/Ti–Al composites. Mater. Lett. 60, 2339 (2006).CrossRefGoogle Scholar
Huang, L.J., Geng, L., Fu, Y., Kaveendran, B., and Peng, H.X.: Oxidation behavior of in situ TiCp/Ti6Al4V composite with self-assembled network microstructure fabricated by reaction hot pressing. Corros. Sci. 69, 175 (2013).CrossRefGoogle Scholar
Yi, M., Zhang, X.Z., Liu, G.W., Wang, B., Shao, H.C., and Qiao, G.J.: Comparative investigation on microstructures and mechanical properties of (TiB + TiC)/Ti–6Al–4V composites from Ti–B4C–C and Ti–TiB2–TiC systems. Mater. Charact. 140, 281 (2018).CrossRefGoogle Scholar
Lu, W.J., Zhang, D., Zhang, X.N., Bian, Y.J., Wu, R.J., Sakata, T., and Mori, H.: Microstructure and tensile properties of in situ synthesized (TiBw + TiCp)/Ti6242 composites. J. Mater. Sci. 36, 3707 (2001).CrossRefGoogle Scholar
Lu, W.J., Zhang, D., Wu, R.J., and Mori, H.: Solidification paths and reinforcement morphologies in melt-processed (TiB + TiC)/Ti in situ composites. Metall. Mater. Trans. A 33, 3055 (2002).CrossRefGoogle Scholar
Qin, Y.X., Lu, W.J., Sheng, X.F., Yang, Z.F., and Zhang, D.: Mechanical properties of in situ synthesized titanium matrix composites at elevated temperature. Mater. Trans. 44, 2282 (2003).CrossRefGoogle Scholar
Dutta Majumdar, J., Weisheit, A., Mordike, B.L., and Manna, I.: Laser surface alloying of Ti with Si, Al and Si + Al for an improved oxidation resistance. Mater. Sci. Eng., A 266, 123 (1999).CrossRefGoogle Scholar
Supplementary material: Image

Yi et al. supplementary material

Yi et al. supplementary material 1

Download Yi et al. supplementary material(Image)
Image 4.8 MB
Supplementary material: Image

Yi et al. supplementary material

Yi et al. supplementary material 2

Download Yi et al. supplementary material(Image)
Image 4.7 MB