Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T17:44:10.111Z Has data issue: false hasContentIssue false

Origin of the plasticity in bulk amorphous alloys

Published online by Cambridge University Press:  31 January 2011

Jae-Chul Lee*
Affiliation:
Department of Materials Science and Engineering, Korea University, Seoul 136-701, Korea
Kyoung-Won Park
Affiliation:
Department of Materials Science and Engineering, Korea University, Seoul 136-701, Korea
Kyou-Hyun Kim
Affiliation:
Department of Materials Science and Engineering, Korea University, Seoul 136-701, Korea
Eric Fleury
Affiliation:
Division of Advanced Metals, Korea Institute of Science and Technology, Seoul 130-136, Korea
Byeong-Joo Lee
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
Masato Wakeda
Affiliation:
Department of Mechanical Engineering, Osaka University, Osaka 565-0871, Japan
Yoji Shibutani
Affiliation:
Department of Mechanical Engineering, Osaka University, Osaka 565-0871, Japan; and Center of Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Unlike the dislocation-based plasticity in crystalline metals, which can be readily explained by their crystal structure and the presence of defects, the nature of the plasticity in amorphous alloys is not completely understood. Experiments have shown that the plasticity in amorphous alloys is strongly dependent on their atomic packing density. This study, based on the combination of experimental and computational techniques, examines the origin of the plasticity in amorphous alloys considering characteristics of the inherent atomic-scale structure as defined by short-range ordered (SRO) clusters. The role of various SRO atomic clusters in creating free volume during shear deformation is discussed. We report that the plasticity exhibited by amorphous alloys is very sensitive to the characteristics of the atomic packing state, which can be described by various SRO atomic structures and quantified by the effective activation energy for crystallization.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Miracle, D.B.: Structural model for metallic glasses. Nat. Mater. 3, 697 2004CrossRefGoogle ScholarPubMed
2Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M.Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 2006CrossRefGoogle ScholarPubMed
3Miracle, D.B.: The efficient cluster packing model—An atomic structural model for metallic glasses. Acta Mater. 54, 4317 2006CrossRefGoogle Scholar
4Kaban, I., Halm, T.H., Hoyer, W., Jovari, P.Neuefeind, J.: Short-range order in amorphous germanium-tellurium alloys. J. Non-Cryst. Solids 326, 120 2003CrossRefGoogle Scholar
5Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Mater. 25, 407 1977CrossRefGoogle Scholar
6Argon, A.S.Kuo, H.Y.: Free energy spectra for inelastic deformation of five metallic glass alloys. J. Non-Cryst. Solids 37, 241 1980CrossRefGoogle Scholar
7Park, J.S., Lim, H.K., Kim, J.H., Chang, H.J., Kim, W.T.Kim, D.H.: In-situ crystallization and enhanced mechanical properties of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy by cold rolling. J. Non-Cryst. Solids 51, 2142 2005CrossRefGoogle Scholar
8Yokoyama, Y.: Ductility improvement of Zr–Cu–Ni–Al glassy alloy. J. Non-Cryst. Solids 316, 104 2003CrossRefGoogle Scholar
9Cao, Q.P., Li, J.F., Zhou, Y.H., Horsewell, A.Jiang, J.Z.: Effect of rolling deformation on the microstructure of bulk Cu60Zr20Ti20 metallic glass and its crystallization. Acta Mater. 54, 4373 2006CrossRefGoogle Scholar
10Egami, T., Maeda, K.Vitek, V.: Structural defects in amorphous solids: A computer simulation. Philos. Mag. A 41, 883 1980CrossRefGoogle Scholar
11Raghavan, R., Murali, P.Ramamurty, U.: Ductile to brittle transition in the Zr41.2Ti13.75Cu12.5Ni10Be22.5 bulk metallic glass. Intermetallics 14, 1051 2006CrossRefGoogle Scholar
12Suh, D.Dauskardt, R.H.: Effects of open-volume regions on relaxation time scales and fracture behavior of a Zr–Ti–Ni–Cu–Be bulk metallic glass. J. Non-Cryst. Solids 317, 181 2003CrossRefGoogle Scholar
13Lewandowski, J.J., Shazly, M.Shamimi, N.A.: Intrinsic and extrinsic toughening of metallic glasses. Scripta Mater. 54, 337 2006CrossRefGoogle Scholar
14Huang, Y.J., Shen, J.Sun, J.F.: Bulk metallic glasses: Smaller is softer. Appl. Phys. Lett. 90, 081919 2007CrossRefGoogle Scholar
15Deng, D., Argon, A.S.Yip, S.: Kinetics of structural relaxations in a two-dimensional model atomic glass. 3. Philos. Trans. R. Soc. London, Ser. A 329, 595 1989Google Scholar
16Deng, D., Argon, A.S.Yip, S.: Simulation of plastic deformation in a two-dimensional atomic glass by molecular dynamics. 4. Philos. Trans. R. Soc. London, Ser. A 329, 613 1989Google Scholar
17Wakeda, M., Shibutani, Y., Ogata, S.Park, J.: Relationship between geometrical factors and mechanical properties for Cu–Zr amorphous alloys. Intemetallics 15, 139 2007CrossRefGoogle Scholar
18Xu, D., Lohwongwatana, B., Duan, G., Johnson, W.L.Garland, C.: Bulk metallic glass formation in binary Cu-rich alloy series-Cu100−XZrX (X = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 2004CrossRefGoogle Scholar
19Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K.Ma, E.: Bulk metallic glass formation in the binary Cu–Zr system. Appl. Phys. Lett. 84, 4029 2004CrossRefGoogle Scholar
20Kwon, O.J., Kim, Y.C., Lee, Y.K.Fleury, E.: Formation of amorphous phase in the binary Cu–Zr alloy system. Met. Mater. Int. 12, 207 2006CrossRefGoogle Scholar
21Kwon, O.J., Lee, Y.K., Park, S.O., Lee, J.C., Kim, Y.C.Fleury, E.: Thermal and mechanical behaviors of Cu–Zr amorphous alloys. Mater. Sci. Eng., A 449, 169 2007CrossRefGoogle Scholar
22Duan, G., Xu, D.Johnson, W.L.: High copper content bulk glass formation in bimetallic Cu–Hf System. Mater. Trans. A 36A, 455 2005CrossRefGoogle Scholar
23Xia, L., Li, W.H., Fang, S.S., Wei, B.C.Dong, Y.D.: Binary Ni–Nb bulk metallic glasses. J. Appl. Phys. 99, 026103 2006CrossRefGoogle Scholar
24Xia, L., Ding, D., Shan, S.T.Dong, Y.D.: The glass forming ability of Cu-rich Cu–Hf binary alloys. J. Phys.: Condens. Matter 18, 3543 2006Google Scholar
25Inoue, A.Tackeuchi, A.: Recent progress in bulk glass alloys. Mater. Trans., JIM 43, 1892 2002CrossRefGoogle Scholar
26Bernal, J.D.: Geometry of the structure of monatomic liquids. Nature 185, 68 1960CrossRefGoogle Scholar
27Bernal, J.D.: A geometrical approach to the structure of liquids. Nature 183, 141 1959CrossRefGoogle Scholar
28Dieter, G.E.Mechanical Metallurgy, 3rd ed.McGraw Hill New York 1986 22Google Scholar
29Lee, S.W., Huh, M.Y., Fleury, E.Lee, J.C.: Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys. Acta Mater. 54, 349 2006CrossRefGoogle Scholar
30Lee, B.J., Lee, C.S.Lee, J.C.: Stress induced crystallization of amorphous materials and mechanical properties of nanocrystalline materials: A molecular dynamics simulation study. Acta Mater. 51, 6233 2003CrossRefGoogle Scholar
31Lee, B.J., Lee, J.C., Kim, Y.C.Lee, S.H.: Behavior of amorphous materials under hydrostatic pressures: A molecular dynamics simulation study. Met. Mater. Int. 10, 467 2004CrossRefGoogle Scholar
32Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 1979CrossRefGoogle Scholar
33Falk, M.L.Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192 1998CrossRefGoogle Scholar
34Ye, F.Lu, K.: Pressure effect on crystallization kinetics of an Al–La–Ni amorphous alloy. Acta Mater. 47, 2449 1999CrossRefGoogle Scholar
35Lee, S.W., Huh, M.Y., Chae, S.W.Lee, J.C.: Mechanism of the deformation-induced nanocrystallization in a Cu-based bulk amorphous alloy under uniaxial compression. Scripta Mater. 54, 1439 2006CrossRefGoogle Scholar
36Ye, F.Lu, K.: Crystallization kinetics of amorphous solids under pressure. Phys. Rev. B 60, 7018 1999CrossRefGoogle Scholar
37Kim, J.J., Choi, Y., Suresh, S.Argon, A.: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654 2002CrossRefGoogle ScholarPubMed
38Zhuang, Y.X., Jiang, J., Zhou, T.J.Rasmussen, H.K.: Effect of pressure on crystallization of Al89La6Ni5 amorphous alloy. Appl. Phys. Lett. 77, 4133 2000CrossRefGoogle Scholar
39Kissinger, H.E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 1957CrossRefGoogle Scholar
40Yinnon, H.Uhlmann, D.R.: Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids. J. Non-Cryst. Solids 54, 253 1983CrossRefGoogle Scholar
41Lewandowski, J.J., Wang, W.H.Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 2005CrossRefGoogle Scholar
42Schroers, J.Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 2004CrossRefGoogle ScholarPubMed