Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T07:24:57.588Z Has data issue: false hasContentIssue false

Oriented overgrowth of metals onto poly-1,4-phenylene

Published online by Cambridge University Press:  31 January 2011

Hidenori Torii
Affiliation:
The Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611, Japan
Masaki Tsuji
Affiliation:
The Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611, Japan
Get access

Abstract

Thin, oriented films of poly-1,4-phenylene (PPP) were prepared with a specially designed reaction vessel. Various kinds of metals were deposited by vacuum evaporation on the PPP substrate, the temperature of which was able to be changed up to 400 °C. Of the studied metals, tellurium and bismuth exhibited the oriented crystallization on it. The oriented overgrowth of tellurium crystallites occurred in the temperature range of 150 °C–200 °C. There were two modes of oriented overgrowths of crystallites in the case of bismuth; one was performed by deposition around room temperature and the other at about 100 °C. The oriented overgrowths of bismuth and tellurium on PPP were examined in terms of the mismatch parameter of the crystal lattice, and it was found that the overgrowths were caused by the lattice matching at the interface between the crystallites of the metals and the PPP substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Petermann, J. and Broza, G., J. Mater. Sci. 22, 1108 (1987).CrossRefGoogle Scholar
2.Peneva, S. K. and Schultz, J.M., J. Polymer Sci Polymer Phys. 25, 185 (1987).Google Scholar
3.Faghihi, S., Hoffman, Th., Petermann, J., and Martinez-Salazar, J., Macromolecules 25, 2509 (1992).CrossRefGoogle Scholar
4.Radhakrishnan, S. and Schultz, J. M., J. Cryst. Growth 116, 278 (1992).CrossRefGoogle Scholar
5.Hoffmann, T., Fiedler, B., Kluck, T., Petermann, J., and Martinez-Salazar, J., Thin Solid Film 245, 272 (1994).CrossRefGoogle Scholar
6.Polymer/Inorganic Interfaces, edited by Opila, R. L., Boerio, F. J., and Czanderna, A. W. (Mater. Res. Soc. Symp. Proc. 304, Pittsburgh, PA, 1993).Google Scholar
7.Petermann, J., Hoffmann, T., and Martinez-Salazar, J., J. Vac. Sci. Technol. B 12 (2), 613 (1994).CrossRefGoogle Scholar
8.Peo, N., Roth, S., Dransfeld, K., Tieke, B., Hocker, J., Gross, H., Grupp, A., and Sixl, H., Solid State Commun. 35, 119 (1980).CrossRefGoogle Scholar
9.Hasslin, H. W. and Riekel, C., Synth. Met. 5, 37 (1982).CrossRefGoogle Scholar
10.Pradere, P., Boudet, A., Goblot, J-Y., Froyer, G., and Maurice, F., Mol. Cryst. Liq. Cryst. 118, 277 (1985).CrossRefGoogle Scholar
11.Golddenburg, L. M., Krinichnyi, V. I., and Nazaroba, I. B., Synth. Met. 44, 199 (1991).CrossRefGoogle Scholar
12.Kovacic, P., Feldmann, M. B., Kovacic, J. P., and Lando, J. B., J. Appl. Polym. Sci. 12, 1753 (1968).CrossRefGoogle Scholar
13.Tieke, B., Bubeck, C., and Lieser, G., Makromol. Chem. Rapid Commun. 3, 261 (1982).CrossRefGoogle Scholar
14.Froyer, G., Maurice, F., Mercier, J. P., Riviere, D., Le Cun, M., and Auvray, P., Polymer 22, 992 (1981).CrossRefGoogle Scholar
15.Teraoka, F. and Takahshi, T., J. Macromol. Sci. Phys. B 18, 73 (1980).CrossRefGoogle Scholar
16.Boudet, A. and Pradere, P., Synth. Met. 9, 491 (1984).CrossRefGoogle Scholar
17.Komakine, M., Namikawa, T., and Yamazaki, Y., Makromol. Chem. Rapid. Commun. 7, 137 (1986).CrossRefGoogle Scholar
18.Kawaguchi, A. and Petermann, J., Mol. Cryst. Liq. Cryst. 133, 189 (1986).CrossRefGoogle Scholar
19.Fark, H., Fink, J., Scheerer, B., Stamm, M., and Tieke, B., Synth. Met. 17, 583 (1987).CrossRefGoogle Scholar
20.Sasaki, S., Yamamoto, T., Kanbara, T., Morita, A., and Yamamoto, Y., J. Polym. Sci., Polym. Phys. B30, 293 (1992).CrossRefGoogle Scholar
21.Kawaguchi, A., Tsuji, M., Moriguchi, S., Uemura, A., Isoda, S., Ohara, M., Petermann, J., and Katayama, K., Bull. Inst. Chem. Res., Kyoto Univ. 64, 54 (1986).Google Scholar
22.Baker, K. N., Fratini, A. V., Resch, T., Knachel, H. C., Adams, W. W., Socci, E. P., and Framer, B. L., Polymer 34, 1571 (1993).CrossRefGoogle Scholar
23.Kawaguchi, A., Murakami, S., Katayama, K., Mihoichi, M., and Ohta, T., Bull. Inst. Chem. Res., Kyoto Univ. 69, 145 (1991).Google Scholar
24.KAGAKU BINRAN (in Japanese), ver. 4 (The Chemical Society of Japan, Maruzen, 1993).Google Scholar
25.Eng, L. M., Fuchs, H., Jandt, K. D., and Petermann, J., J. Ultra-microscopy 42, 989 (1992).Google Scholar
26.Stokes, W., Magonov, S. N., Kantow, H-J., Wittmann, J., and Lotz, B., Macromolecules 26, 5915 (1993).Google Scholar
27.Stocker, W., Schumacher, M., Graff, S., Lang, J., Wittmann, J. C., Lovinger, A. J., and Lotz, B., Macromolecules 27, 6948 (1994).CrossRefGoogle Scholar
28.Jandt, K. D., McMaster, T. J., Miles, M. J., and Petermann, J., Macromolecules 26, 6552 (1993).CrossRefGoogle Scholar