Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T04:16:27.420Z Has data issue: false hasContentIssue false

Oriented BSCCO thick film coatings on polycrystalline MgO

Published online by Cambridge University Press:  31 January 2011

J. R. Spann
Affiliation:
Composites and Ceramics Branch, Naval Research Laboratory, Washington, DC 20375
L. E. Toth
Affiliation:
Composites and Ceramics Branch, Naval Research Laboratory, Washington, DC 20375
I. K. Lloyd
Affiliation:
Composites and Ceramics Branch, Naval Research Laboratory, Washington, DC 20375
M. Kahn
Affiliation:
Composites and Ceramics Branch, Naval Research Laboratory, Washington, DC 20375
M. Chase
Affiliation:
Composites and Ceramics Branch, Naval Research Laboratory, Washington, DC 20375
B. N. Das
Affiliation:
Composites and Ceramics Branch, Naval Research Laboratory, Washington, DC 20375
T. L. Francavilla
Affiliation:
Materials Physics Branch, Naval Research Laboratory, Washington, DC 20375
M. S. Osofsky
Affiliation:
Materials Physics Branch, Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

Highly oriented 2212 BSCCO thick films were prepared on polycrystalline MgO substrates using a melt/crystallization technique. Results compare very favorably with those on single crystal materials.1,2 The melting, quenching, and annealing processes were all found to be important in the development of a good microstructure and good superconducting properties. The best results (Jc ∼ 2000 A/cm2 at 64 K and 6000 A/cm2 at 4.2 K) were obtained on films which had been melted, quenched to room temperature, heated to 860°C where they were annealed before slow cooling to room temperature in oxygen, lightly polished, and reannealed at 860°C.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Akamatsu, Y., Tatsumisago, M., Tohge, N., Tsuboi, S., and Minami, T., Jpn. J. Appl. Phys. Lett. 27, L1696–L1698 (1988).CrossRefGoogle Scholar
2Zhu, W., Miller, M. M., Metcalf, P. A., Calhoun, C. S., and Sato, H., Mater. Lett. 7, 247249 (1988).CrossRefGoogle Scholar
3Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. Lett. 27, L209–L210 (1988).CrossRefGoogle Scholar
4Shimomura, S., Takahashi, K., Seki, H., Sakata, K., and Takenaka, T., Jpn. J. Appl. Phys. Lett. 28, L612–L614 (1989).CrossRefGoogle Scholar
5Yamane, H., Kurosawa, H., Iwasaki, H., Hirai, T., Kobayashi, N., and Muto, Y., Jpn. J. Appl. Phys. Lett. 28, L827–L830 (1989).CrossRefGoogle Scholar
6Miura, S., Yoshitake, T., Manako, T., Miyasaka, Y., and Shohata, N., Appl. Phys. Lett. 55, 13601362 (1989).CrossRefGoogle Scholar
7Nakayama, Y., Ochimizu, H., Maeda, A., Kawazu, A., Uchinokura, K., and Tanaka, S., Jpn. J. Appl. Phys. Lett. 28, L1217–L1219 (1989).CrossRefGoogle Scholar
8MYoshitake, T., Satoh, T., Kubo, Y., and Igarashi, H., Jpn. J. Appl. Phys. Lett. 27, L1089–L1091 (1988).CrossRefGoogle Scholar
9Levinson, M., Shah, S. S. P., and Wang, D.Y., Appl. Phys. Lett. 55, 16831685 (1989).CrossRefGoogle Scholar
10Prieto, P., Zorn, G., Arons, R.R., Thierfeldt, S., Gomez, M.E., Kabius, B., Sybertz, W., and Urban, K., Solid State Commun. 69, 235240 (1989).CrossRefGoogle Scholar
11Bohn, C.L., Delayen, J. R., Balachandran, U., and Lanagan, M.T., Appl. Phys. Lett. 55, 304306 (1989).CrossRefGoogle Scholar
12Hoshino, K., Takahara, H., and Fukutomi, M., Jpn. J. Appl. Phys. Lett. 27, L1297–L1299 (1988).CrossRefGoogle Scholar
13Tabuchi, J., Shimakawa, Y., Ochi, A., and Utsumi, K., in Ceramic Superconductors II, edited by M. F. Yan (Am. Ceram. Soc, 1988), pp. 464–473.Google Scholar
14Yoshida, Y., Kitahara, S., Togano, K., Yuyama, M., Inoue, K., Maeda, H., and Funaki, M., Jpn. J. Appl. Phys. Lett. 28, L639– L642 (1989).CrossRefGoogle Scholar
15Yoshimoto, M., Hashimoto, T., and Koinuma, H., Jpn. J. Appl. Phys. Lett. 28, L984–L986 (1989).CrossRefGoogle Scholar
16MAgatsuma, K., Ohara, T., Kaiho, K., and Tateishi, H., IEEE Trans. Magn. 25, 24872490 (1988).CrossRefGoogle Scholar
17Kubo, Y, Michishita, K., Higashida, Y., Mizuno, M., Yokoyama, H., Shimizu, N., Inukai, E., Kuroda, N., and Yoshida, H., Jpn. J. Appl. Phys. Lett. 28, L606–L608 (1989).CrossRefGoogle Scholar
18Asano, H., Asahi, M., Katoh, Y., and Michikami, O., Jpn. J. Appl. Phys. Lett. 27, L1487–L1488 (1988).CrossRefGoogle Scholar
19Takeya, H. and Takei, H., Jpn. J. Appl. Phys. Lett. 28, L229–L232 (1989).CrossRefGoogle Scholar
20Maruyama, T. and Higashi, S., Jpn. J. Appl. Phys. Lett. 27, L2084– L2087 (1988).CrossRefGoogle Scholar
21Ekin, R., in Materials at Low Temperatures, edited by R. P. Reed and A.F. Clark (Am. Soc. for Metals, Metals Park, OH, 1983), Chap. 13.Google Scholar
22Nassau, K., Miller, A. E., Gyorgy, E. M., and Siegrist, T., J. Mater. Res. 4 (6), 13301338 (1989).CrossRefGoogle Scholar
23Zanotto, E. D., Cronin, J. P., Dutta, B., Samuels, B., Subramoney, S., Smith, G. L., Dale, G., Grudgel, T. J., Rajendran, G., Uhlmann, E.V., Denesuk, M., Fabes, B. D., Uhlmann, D. R., Vasquez, V. Garcia, Makous, J., and Falco, C., in Ceramic Superconductors II, edited by M. F. Yan (Am. Ceram. Soc, 1988), pp. 406–418.Google Scholar
24Oka, Y., Yamamoto, N., Tomii, Y., Kitaguchi, H., Oda, K., and Takada, J., Jpn. J. Appl. Phys. Lett. 28, L801–L803 (1989).CrossRefGoogle Scholar
25Das, B. N., Toth, L. E., Rayne, R. J., Bender, B. A., Osofsky, M. S., Soulen, R.J., Jr. Lechter, W. L., Koon, N. C., and Wolf, S.A., J. Superconductivity 2, 253263 (1989).CrossRefGoogle Scholar