Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T14:20:11.883Z Has data issue: false hasContentIssue false

Optimization of the annealing process for the (Ba,Sr)TiO3 thin films grown by low-temperature (420 °C) metalorganic chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Jaehoo Park
Affiliation:
Seoul National University, School of Materials Science and Engineering, San No. 56-1 Shillim-dong, Kwanak-ku, Seoul 151-742, Korea
Cheol Seong Hwang*
Affiliation:
Seoul National University, School of Materials Science and Engineering, San No. 56-1 Shillim-dong, Kwanak-ku, Seoul 151-742, Korea
Doo Young Yang
Affiliation:
Jusung Engineering Ltd., No. 49, Neungpyeong-Ri, Opo-Myeun, Kwangju, Kyunggi-Do 464-890, Korea
*
a)Address all correspondence to this author. e-mial: [email protected]
Get access

Abstract

An optimization study on crystallization annealing of (Ba,Sr)TiO3 (BST) thin films, grown by metalorganic chemical vapor deposition at a wafer temperature of 420 °C, was performed. The as-grown film had an amorphous structure with a dielectric constant of about 20. The annealing parameters, including temperature, atmosphere, time, and sequence, were varied considering the limitations imposed by integration processes for ultralarge-scale integrated dynamic random access memory devices. The dielectric constants of the crystallized films were largely determined by the maximum temperature that the films experienced with minor effects from the annealing atmosphere. However, the leakage current densities were quite dependent on the annealing sequence and atmosphere. It was concluded that the major factors which determine leakage characteristics were concentrations of impurities, especially carbon, oxygen vacancies, and interfacial defects caused by top electrode sputtering.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nitayamy, A., Kohyama, Y., and Hieda, K., IEDM Tech. Dig. 355 (1998).Google Scholar
2.Mazure, C., Alsmeier, J., Dehm, C., and Hönlein, W., Integr. Ferroelectr. 21, 15 (1998).CrossRefGoogle Scholar
3.Yuuki, A., Yamamuka, M., Makita, T., Horikawa, T., Shibano, T., Hirano, N., Maeda, H., Mikami, N., Ono, K., Ogata, H., and Aber, H., IEDM Tech. Dig. 115 (1995).Google Scholar
4.Hwang, C.S., Park, S.O., Kang, C.S., Cho, H.J., Kang, H.K., Lee, S.I., and Lee, M.Y., Appl. Phys. Lett. 67, 2819 (1995).CrossRefGoogle Scholar
5.Joo, J-H., Jeon, Y-C., Seon, J-M., Oh, K-Y., Roh, J-S., and Kim, J-J., Jpn. J. Appl. Phys. 36, 4382 (1997).CrossRefGoogle Scholar
6.Hwang, C.S., J. Mater. Sci. Eng. B B56, 178 (1998).CrossRefGoogle Scholar
7.Kang, C.S., Hwang, C.S., Cho, H.J., Lee, B.T., Park, S.O., Kim, J.W., Horii, H., Lee, S.I., and Lee, M.Y., Jpn. J. Appl. Phys. 35, 4890 (1996).CrossRefGoogle Scholar
8.Han, J.H., Ryu, H-K., Chung, C-H., Yu, B-G., and Moon, S.H., J. Electrochem. Soc. 142, 3890 (1995).Google Scholar
9.Yamamuka, M., Kawahara, T., Tarutani, M., Horikawa, T., Oomori, T., and Ono, K., J. Appl. Phys. 86, 1082 (1999).CrossRefGoogle Scholar
10.Hwang, C.S., Park, S., Yang, O.Y., Yamg, C.H., Kim, D.H., Hon, Y.K., Oh, K., and Hwang, C.J., Integrated Ferroelectronics 30, 37 (2000).CrossRefGoogle Scholar
11.Lee, K.H., Hwang, C.S., Lee, B.T., Kim, W.D., Cho, H.J., Kang, C.S., Horii, H., Lee, S.I., and Lee, M.Y., Jpn. J. Appl. Phys. 36, 5860 (1997).CrossRefGoogle Scholar
12.D’Heurle, F.M., and Harper, J.M.E., Thin Solid Films 171, 81 (1989).CrossRefGoogle Scholar
13.Hwang, C.S. and Joo, S.H., J. Appl. Phys. 85, 2431 (1999).CrossRefGoogle Scholar
14.Horikawa, T., Tanimura, J., Kawahara, T., Yamamuka, M., Tarutani, M., and Ono, K., IEICE Trans., Electron. E81-C 4 (1998).Google Scholar
15.Shin, J.C., Park, J.H., Hwang, C.S., and Kim, H.J., J. Appl. Phys. 86, 506 (1999).CrossRefGoogle Scholar
16.Shin, J.C., Hwang, C.S., and Kim, H.J., Appl. Phys. Lett. 76, 1609 (2000).CrossRefGoogle Scholar
17.Gopalan, S., Balu, V., Lee, J-H., Han, J.H., and Lee, J.C., Appl. Phys. Lett. 77, 1526 (2000).CrossRefGoogle Scholar