Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T01:10:59.171Z Has data issue: false hasContentIssue false

Optimization of PbTiO3 seed layers and Pt metallization for PZT-based piezoMEMS actuators

Published online by Cambridge University Press:  19 July 2013

Luz M. Sanchez*
Affiliation:
RF MEMS & mm-Scale Robotics, U.S. Army Research Laboratory, Adelphi, Maryland 20783; and Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742
Daniel M. Potrepka
Affiliation:
RF MEMS & mm-Scale Robotics, U.S. Army Research Laboratory, Adelphi, Maryland 20783
Glen R. Fox
Affiliation:
Fox Materials Consulting LLC, Colorado Spring, Colorado 80908
Ichiro Takeuchi
Affiliation:
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742
Ke Wang
Affiliation:
Metallurgy Division, NIST, Gaithersburg, Maryland 20886
Leonid A. Bendersky
Affiliation:
Metallurgy Division, NIST, Gaithersburg, Maryland 20886
Ronald G. Polcawich
Affiliation:
RF MEMS & mm-Scale Robotics, U.S. Army Research Laboratory, Adelphi, Maryland 20783
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This work attempts to optimize past research results on lead zirconate titanate (PZT) using the fabrication processes at the U.S. Army Research Laboratory so as to achieve a high degree of {001} texture and improved piezoelectric properties. A comparative study was performed between Ti/Pt and TiO2/Pt bottom electrodes. The results indicate that the use of a highly oriented {100} rutile phase TiO2 led to highly textured {111} Pt which in turn improved both the PTO and PZT orientations. PZT (52/48) and (45/55) thin films with and without PTO seed layers were deposited and examined via x-ray diffraction (XRD) methods as a function of annealing temperature. The seed layer provides significant improvement in the {100} orientation generally, and in the {001} subset of planes specifically, while suppressing the {111} orientation of the PZT. Improvements in the Lotgering factor (f) were observed from an existing Ti/Pt/PZT process (f = 0.66) to samples using the PTO seed layer deposited onto the improved Pt electrodes, TiO2/Pt/PTO/PZT (f = 0.96).

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ross, P.: Benedetto Vigna: The Man Behind the Chip Behind the Wii (IEEE Spectrum, 2007).Google Scholar
Leroy, S.: Top 30 MEMS Companies 2010. Yole Developpment, 2011.Google Scholar
Trolier-McKinstry, S. and Muralt, P.: Thin film piezoelectrics for MEMS. J. Electroceram. 12, 717 (2004).CrossRefGoogle Scholar
Baek, S.H., Park, J., Kim, D.M., Aksyuk, V.A., Das, R.R., Bu, S.D., Felker, D.A., Lettieri, J., Vaithyanathan, V., Bharadwaja, S.S.N., Bassiri-Gharb, N., Chen, Y.B., Sun, H.P., Folkman, C.M., Jang, H.W., Kreft, D.J., Streiffer, S.K., Ramesh, R., Pan, X.Q., Trolier-McKinstry, S., Schlom, D.G., Rzchowski, M.S., Blick, R.H., and Eom, C.B.: Giant piezoelectricity on Si for hyperactive MEMS. Science 334, 958961 (2011).CrossRefGoogle ScholarPubMed
Polcawich, R.G., Pulskamp, J.S., Judy, D., Ranade, P., Trolier-McKinstry, S., and Dubey, M.: Surface micromachined microelectromechancial ohmic series switch using thin-film piezoelectric actuators. IEEE Trans. Microwave Theory Tech. 55(12), 26422654 (2007).Google Scholar
Proie, R.M., Polcawich, R.G., Pulskamp, J.S., Ivanov, T., and Zaghloul, M.E.: Development of a PZT MEMS switch architecture for low-power digital applications. J. Microelectromech. Syst. 20(4), 4, 10321042 (2011).CrossRefGoogle Scholar
Bronson, J.R., Pulskamp, J.S., Polcawich, R.G., Kroninger, C.M., and Wetzel, E.D.: PZT MEMS actuated flapping wings for insect-inspired robotics. In IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009. MEMS 2009, (IEEE Xplore, 2009); pp. 10471050.Google Scholar
Takahashi, Y. and Suzuki, M.: Piezoelectric ink jet printer head. U.S. Patent 5 266 964, November 30, 1993.Google Scholar
Muralt, P., Maeder, T., Sagalowicz, L., Hiboux, S., Scalese, S., Naumovic, D., Agostino, R.G., Xanthopoulos, N., Mathieu, H.J., Patthey, L., and Bullock, E.L.: Texture control of PbTiO3 and Pb(Zr, Ti)O3 thin films with TiO2 seeding. J. Appl. Phys. 83(7), 38353841 (1998).CrossRefGoogle Scholar
Jaffe, B., Roth, R.S., and Marzullo, S.: Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J. Appl. Phys. 25(6), 809810 (1954).CrossRefGoogle Scholar
Damjanovic, D.: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61(9), 12671324 (1998).Google Scholar
Ledermann, N., Muralt, P., Baborowski, J., Gentil, S., Mukati, K., Cantoni, M., Seifert, A., and Setter, N.: {1 0 0}-textured, piezoelectric Pb(Zrx, Ti1−x)O3 thin films for MEMS: Integration, deposition and properties. Sens. Actuators, A 105(2), 162170 (2003).CrossRefGoogle Scholar
Shelton, C.T., Kotula, P.G., Brennecka, G.L., Lam, P.G., Meyer, K.E., Maria, J-P., Gibbons, B.J., and Ihlefeld, J.F.: Chemically homogeneous complex oxide thin films via improved substrate metallization. Adv. Funct. Mater. 22(11), 22952302 (2012).Google Scholar
Nakajima, M., Okamoto, S., Nakaki, H., Yamada, T., and Funakubo, H.: Enhancement of piezoelectric response in (100)/(001) oriented tetragonal Pb(Zr, Ti)O3 films by controlling tetragonality and volume fraction of the (001) orientation. J. Appl. Phys. 109(9), 091601–091601–5 (2011).CrossRefGoogle Scholar
Trupina, L., Miclea, C., Amarande, L., and Cioangher, M.: Growth of highly oriented iridium oxide bottom electrode for Pb(Zr, Ti)O3 thin films using titanium oxide seed layer. J. Mater. Sci. 46(21), 68306834 (2011).Google Scholar
Bai, S., Xu, Q., Gu, L., Ma, F., Qin, Y., and Wang, Z.L.: Single crystalline lead zirconate titanate (PZT) nano/micro-wire based self-powered UV sensor. Nano Energy 1(6), 789795 (2012).Google Scholar
Tang, H., Lin, Y., and Sodano, H.A.: Nanocomposite capacitors: Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv. Energy Mater. 2(4), 393–393 (2012).Google Scholar
Benčan, A., Malič, B., Drnovšek, S., Tellier, J., Rojac, T., Pavlič, J., Kosec, M., Webber, K.G., Rödel, J., and Damjanovi&ccaron, D.;: Structure and the electrical properties of Pb(Zr, Ti)O3 – Zirconia composites. J. Am. Ceram. Soc. 95(2), 651657 (2012).CrossRefGoogle Scholar
Wang, D.W., Cao, M.S., Yuan, J., Zhao, Q.L., Li, H.B., Zhang, D.Q., and Agathopoulos, S.: Enhanced piezoelectric and ferroelectric properties of Nb2O5 modified lead zirconate titanate-based composites. J. Am. Ceram. Soc. 94(3), 647650 (2011).CrossRefGoogle Scholar
Potrepka, D.M., Fox, G.R., Sanchez, L.M., and Polcawich, R.G.: Pt/TiO2 growth templates for enhanced PZT films and MEMS devices, in Microelectromechanical Systems – Materials and Devices IV (Mater. Res. Soc. Symp. Proc. 1299, Warrendale, PA, 2011).Google Scholar
Budd, K.D., Dey, S.K., and Payne, D.A.: Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films. Br. Ceram. Proc. 36, 107121 (1985).Google Scholar
Zhou, Q.F., Hong, E., Wolf, R., and Trolier-McKinstry, S.: Dielectric and piezoelectric properties of PZT 52/48 thick films with (100) and random crystallographic orientation, in Ferroelectric Thin Films IX (Mater. Res. Soc. Symp. Proc. 655, Warrendale, PA, 2000) pp. 1171.Google Scholar
Lakeman, C.D.E., Xu, Z., and Payne, D.A.: On the evolution of structure and composition in sol-gel-derived lead zirconate titanate thin layers. J. Mater. Res. 10(08), 20422051 (1995).Google Scholar
Trolier-McKinstry, S.: Private Communication, 2008.Google Scholar
Chopra, S., Sharma, S., Goel, T., and Mendiratta, R.: Electrical and optical properties of sol–gel derived La modified PbTiO3 thin films. Appl. Surf. Sci. 236(1–4), 321327 (2004).CrossRefGoogle Scholar
Sanchez, L. and Polcawich, R.G.: Optimization of PbTiO3 seed layers for PZT MEMS actuators. Technical Report ADA492053, (National Technical Information Service, 2008).Google Scholar
Polcawich, R.G. and Pulskamp, J.S.: Piezoelectric MEMS, in Mems Materials and Processes Handbook, Vol. 1, edited by Ghodssi, R. and Lin, P.L. (Springer, New York, 2011), pp. 273344.CrossRefGoogle Scholar
Oldham, K., Pulskamp, J., Polcawich, R., and Dubey, M.: Thin-film PZT lateral actuators with extended stroke. J. Microelectromech. Syst. 17(4), 890899 (2008).Google Scholar
Kumar, C.V., Sayer, M., Pascual, R., Amm, D.T., Wu, Z., and Swanston, D.M.: Lead zirconate titanate films by rapid thermal processing. Appl. Phys. Lett. 58(11), 11611163 (1991).CrossRefGoogle Scholar
Ma, J.H., Meng, X.J., Sun, J.L., Lin, T., Shi, F.W., Wang, G.S., and Chu, J.H.: Effect of excess Pb on crystallinity and ferroelectric properties of PZT(40/60) films on LaNiO3 coated Si substrates by MOD technique. Appl. Surf. Sci. 240(1–4), 275279 (2005).CrossRefGoogle Scholar
Shao, Q., Li, A., Ling, H., Wu, D., Wang, Y., and Ming, N.: Growth and ferroelectric properties of sol-gel derived Pb(Zr, Ti)O3 using inorganic zirconium precursor. Mater. Lett. 50(1), 3235 (2001).CrossRefGoogle Scholar
Dang, E.F. and Gooding, R.J.: Theory of the effects of rapid thermal annealing on thin-film crystallization. Phys. Rev. Lett. 74(19), 38483851 (1995).CrossRefGoogle ScholarPubMed
Hu, H., Peng, C., and Krupanidhi, S.: Effect of heating rate on the crystallization behavior of amorphous PZT thin films. Thin Solid Films 223(2), 327333 (1993).Google Scholar
Chu, F. and Fox, G.: Method for manufacturing a ferroelectric memory cell including co-annealing. U.S. Patent 6 376 259, April 23, 2002.Google Scholar
Chu, F., Fox, G., Davenport, T., Miyaguchi, Y., and Suu, K.: The control of Pb loss for PZT based FRAM. Integr. Ferroelectr. 48(1), 161169 (2002).CrossRefGoogle Scholar
Burmistrova, P.V., Sigov, A.S., Vasiliev, A.L., Vorotilov, K.A., and Zhigalina, O.M.: Effect of lead content on the microstructure and electrical properties of sol-gel PZT thin films. Ferroelectrics 271(1), 5156 (2002).Google Scholar