Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T00:19:50.246Z Has data issue: false hasContentIssue false

Optical and magnetic properties of EuSi2O2N2

Published online by Cambridge University Press:  01 February 2006

Y.Q. Li
Affiliation:
Laboratory of Materials and Interface Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
K.V. Ramanujachary
Affiliation:
Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028-1701
S.E. Lofland
Affiliation:
Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028-1701
G. de With
Affiliation:
Laboratory of Materials and Interface Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
H.T. Hintzen*
Affiliation:
Laboratory of Materials and Interface Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

A new europium-silicon-oxynitride compound EuSi2O2N2 was obtained by a reaction of Eu2O3, SiO2, and α–Si3N4 at 1300 °C under a nitrogen atmosphere. EuSi2O2N2 is indexed on a monoclinic unit cell with a = 13.151(5) Å, b =17.311(5) Å, c = 7.956(2) Å, β = 104.12(4)°, and V = 1756.56 Å3. EuSi2O2N2 shows a highly pure yellow color associated with a very steep drop in the reflection spectrum with an optical absorption edge at about 512 nm (2.43 eV). On the other hand, EuSi2O2N2 can be efficiently excited in the visible range 370–485 nm and shows a broad band emission peaking at about 568 nm corresponding to the Eu2+ 4f65d1 → 4f7 transition. EuSi2O2N2 shows paramagnetic Curie behavior with an experimental magnetic moment of 7.89(3) μB in accordance with 7 unpaired spins of Eu2+. Additionally, no magnetic ordering can be observed down to 5 K. The divalent nature of the Eu ions in EuSi2O2N2 is evident from both luminescence and magnetic properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Blasse, G. and Grabmaier, B.C.: Luminescent Materials (Springer-Verlag, Berlin, Germany, 1994).CrossRefGoogle Scholar
2.Mohn, P.: Magnetism in the Solid State: An Introduction (Springer, Berlin, Germany, 2003).Google Scholar
3.Morrish, A.H.: The Physical Principle of Magnetism (Wiley, Chichester, 1965).Google Scholar
4.Catti, M., Gazzoni, G., Ivaldi, G. and Zanini, G.: The β→α’ Phase transition of (Sr2SiO4). I. Order-disorder in the structure of the α’ form at 383 K. Acta Crystallogr. B39, 674 (1983).Google Scholar
5.Marchand, R., l’Haridon, P. and Laurent, Y.: Crystal structure of β-europium J. Solid State Chem. 24, 71 (1978).CrossRefGoogle Scholar
6.Huppertz, H. and Schnick, W.: Eu2Si5N8 and EuYbSi4N7, The first nitridosilicates with a divalent rare earth metal. Acta Crystallogr. C53, 1751 (1997).Google Scholar
7.Schlieper, T., Milius, W. and Schnick, W.: Nirido-silicates. II: High temperature Synthesis and crystal structure of Sr2Si5N8 and Ba2Si5N8. Z. Anorg. Allg. Chem. 621, 1380 (1995).CrossRefGoogle Scholar
8.Li, Y.Q., de With, G. and Hintzen, H.T.: Preparation, structure and photoluminescence properties of Eu2+ and Ce3+-doped SrYSi4N7. J. Solid State Chem. 177, 4687 (2004).CrossRefGoogle Scholar
9.Huppertz, H. and Schnick, W.: Synthesis crystal structure, and properties of the nitridosilicates SrYbSi4N7 and BaYbSi4N7. Anorg. Allg. Chem. 623, 212 (1997).CrossRefGoogle Scholar
10.Wickleder, C.: M(SCN)2 (M = Eu, Sr, Ba): Crystal structure, thermal behavior, vibrational spectorscopy. Z. Anorg. Allg. Chem. 627, 1693 (2001).3.0.CO;2-U>CrossRefGoogle Scholar
11.Reckeweg, O. and DiSalvo, F.J.: Eu(CN2)—The first but not quite unexpected ternary rare earth metal cyanamide. Z. Anorg. Allg. Chem. 629, 177 (2003).Google Scholar
12.Berger, U. and Schnick, W.: Syntheses, crystal structures and vibrational spectroscopic properties of MgCN2, SrCN2 and BaCN2. J. Alloys Compd. 206, 179 (1994).CrossRefGoogle Scholar
13.Ekambaram, E.: Effect of host-structure on the charge of europium ion. J. Alloys Compd. 390, L1 (2005).CrossRefGoogle Scholar
14.de Graaf, D., Hintzen, H.T., Hampshire, S. and de With, G.: Long wavelength Eu2+ emission in Eu-doped Y–Si–Al–O–N glasses. J. Eur. Ceram. Soc. 23, 1093 (2003).CrossRefGoogle Scholar
15.Hintzen, H.T., van Krevel, J.W.H., de Graaf, D., Metselaar, R., Menke, Y. and Hampshire, S.: Evidence for the presence of Eu2+ in (Y,Eu)–Si–Al–O–N glass by luminescence spectroscopy. J. Mater. Sci. 39, 2237 (2004).CrossRefGoogle Scholar
16.Qiu, J.R., Miura, K., Sugimoto, N. and Hirao, K.: Preparation and fluorescence properties of fluoroaluminate glasses containing Eu2+ ions. J. Non-Cryst. Solids 213, 266 (1997).CrossRefGoogle Scholar
17.Zhang, Y., Quaranta, A. and Soraru, G.D.: Synthesis and luminescent properties of novel Eu2+-doped silicon oxycarbide glasses. Opt. Mater. 24, 601 (2004).CrossRefGoogle Scholar
18.Zhu, W.H., Wang, P.L., Sun, W.Y. and Yan, D.S.: Phase relationships in the Sr–Si–O–N system. J. Mater. Sci. Lett. 13, 560 (1994).Google Scholar
19.Li, Y.Q., de With, G. and Hintzen, H.T.: Luminescence properties of Eu2+-activated alkaline earth silicon oxynitride MSi2O2−δN2+2/3δ (M = Ca, Sr, Ba): A promising class of novel LED conversion phosphors. Chem. Mater. 17, 3242 (2005).CrossRefGoogle Scholar
20.Shafer, M.W., McGuire, T.R. and Suits, J.C.: Europium orthosilicate, a new transparent ferromagnet. Phys. Rev. Lett. 11, 251 (1963).CrossRefGoogle Scholar
21.Höppe, H.A., Trill, H., Mosel, B.D., Eckert, H., Kotzyba, G., Pottgen, R. and Schnick, W.: Hyperfine interactions in the 13 K ferromagnet Eu2Si5N8. J. Phys. Chem. Solids. 63, 78 (2002).Google Scholar
22.Li, Y.Q., van Steen, J.E.J., van Krevel, J.W.H., Botty, G., Delsing, A.C.A., DiSalvo, F.J., de With, G. and Hintzen, H.T.: Luminescence properties of red-emitting M2Si5N8:Eu2+ (M = Ca, Sr, Ba) LED conversion phosphors. J. Alloys Compd. (2006, in press).Google Scholar
23.Boultif, A. and Louer, D.: Powder pattern indexing with the dichotomy method. J. Appl. Crystallogr. 37, 724 (2004).Google Scholar
24.Louer, D. and Louer, M.: Methode d’essais et erreurs pour l’indexation automatique des diagrammes de poudre. J. Appl. Crystallogr. 5, 271 (1972).Google Scholar
25.Boultif, A. and Louer, D.: Indexing of powder diffraction patterns for low symmetry lattices by the successive dichotomy method. J. Appl. Crystallogr. 24, 987 (1991).CrossRefGoogle Scholar
26.Höppe, H.A., Stadler, F., Oeckler, O. and Schnick, W.: Ca[Si2O2N2]— A novel layer silicate. Angew. Chem. Int. Ed. Engl. 43, 5540 (2004).Google Scholar
27.Li, Y.Q., de With, G.. and Hintzen, H.T.: Luminescence of a new class UV- blue-emitting phosphors MSi2O2−δN2+2/3δ:Ce3+ (M = Ca, Sr, Ba). J. Mater. Chem. 15, 4492 (2005).Google Scholar
28.Pocha, R., Tampier, M., Hoffmann, R.D., Mosel, B.D., Poettgen, R. and Johrendt, D.: Crystal structure and properties of the thiostannates Eu2SnS4 and Sr2SnS4 and the selenogeermanate γ–Sr2GeSe4. Z. Anorg. Allg. Chem. 629, 1379 (2003).CrossRefGoogle Scholar
29.Kaldis, E., Streit, P. and Wachter, P.: Luminescence properties of monoclinic phase of ferromagnetic Eu2(II)SiO4. J. Phys. Chem. Solids 32, 159 (1971).CrossRefGoogle Scholar
30.Gauthier, G., Jobic, S., Boucher, F., Macaudiere, P., Huguenin, D., Rouxel, J. and Brec, R.: CePS4 electronic structure and optical properties. Chem. Mater. 10, 2341 (1998).CrossRefGoogle Scholar
31.Abd-Elmeguid, M.M., Sanchez, J.P. and Micklitz, H.: On the valence stability of europium in Eu4Bi3 under high pressure. J. Phys. C: Solid State Phys. 16, L543 (1983).CrossRefGoogle Scholar