Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T13:52:03.188Z Has data issue: false hasContentIssue false

Optical absorption spectrum of single-walled carbon nanotubes dispersed in sodium cholate and sodium dodecyl sulfate

Published online by Cambridge University Press:  31 January 2011

Inderpreet Singh*
Affiliation:
Materials Laboratory, Department of Electronic Science, University of Delhi—South Campus, New Delhi 110 021, India
P.K. Bhatnagar
Affiliation:
Materials Laboratory, Department of Electronic Science, University of Delhi—South Campus, New Delhi 110 021, India
P.C. Mathur
Affiliation:
Materials Laboratory, Department of Electronic Science, University of Delhi—South Campus, New Delhi 110 021, India
L.M. Bharadwaj
Affiliation:
Central Scientific Instruments Organization, Sector 30, Chandigarh 160 020, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Commercially procured single-walled carbon nanotubes were dispersed in 2 wt% solution of sodium cholate and also in 1 wt% solution of sodium dodecyl sulfate. The absorption spectrum of the suspensions was studied in ultraviolet–visible–near-infrared (UV–vis–NIR) range. Two distinct bands, each containing three peaks, were observed in NIR range for both the suspensions. These peaks correspond to transitions between van Hove singularities E11 and E22 in the density of states of the semiconducting nanotubes. Comparing positions of the observed peaks with the empirical Kataura plot, the diameters and chiralities of the nanotubes were estimated. Using tight binding approximations, the diameter of the nanotubes was also estimated theoretically. Discrepancies between the theoretically calculated diameters and those obtained by empirical Kataura plots are found to be higher for E11 peaks. It has been suggested that the reason for this discrepancy is that the observed E11 peaks are blue-shifted due to Coulomb interactions and exciton formation.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Milne, W.I., Teo, K.B.K., Amaratunga, G.A.J., Legagneux, P., Gangloff, L., Schnell, J-P., Semet, V., Binh, V.T., Groening, O.: Carbon nanotubes as field emission sources. J. Mater. Chem. 14, 933 2004CrossRefGoogle Scholar
2Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes—The route toward applications. Science 297, 787 2002CrossRefGoogle ScholarPubMed
3Cheung, C.L., Hafner, J.H., Lieber, C.M.: Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. Proc. Natl. Acad. Sci. U.S.A. 97(8), 3809 2000CrossRefGoogle ScholarPubMed
4Bachtold, A., Hadly, P., Nakanishi, T., Dekker, C.: Logic circuit with carbon nanotube transistors. Science 294, 1317 2001CrossRefGoogle ScholarPubMed
5Cai, H., Cao, X., Jiang, Y., He, P., Fang, Y.: Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal. Bioanal. Chem. 375, 287 2003CrossRefGoogle ScholarPubMed
6Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T., Smalley, R.E.: Nanotubes as nanoprobes in scanning-probe microscopy. Nature 384, 147 1996CrossRefGoogle Scholar
7Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 1991CrossRefGoogle Scholar
8Satio, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes Imperial College Press London 1998Google Scholar
9Telg, H., Maultzsch, J., Reich, S., Thomsen, C.: Resonant Raman intensities and transition energies of E11 transition in carbon nanotubes. Phys. Rev. B 74, 115415 2006CrossRefGoogle Scholar
10Venema, L.C., Muenier, V., Lambin, Ph., Dekker, C.: Atomic structure of carbon nanotubes from scanning tunneling microscope. Phys. Rev. B 61(4), 2994 2000CrossRefGoogle Scholar
11Dekker, C.: Carbon nanotubes as molecular quantum wires. Phys. Today 52(5), 22 1999CrossRefGoogle Scholar
12Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., Achiba, Y.: Optical properties of single wall carbon nanotubes. Synth. Met. 103, 2555 1999CrossRefGoogle Scholar
13Weisman, R.B., Bachilo, S.M.: Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 3(9), 1235 2003CrossRefGoogle Scholar
14Barone, P.W., Baik, S., Heller, D.A., Strano, M.S.: Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 4, 86 2005CrossRefGoogle ScholarPubMed
15O’Connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kittrell, C., Ma, J., Hauge, R.H., Weisman, R.B., Smalley, R.E.: Band gap fluorescence from individual single walled carbon nanotubes. Science 297, 593 2002CrossRefGoogle ScholarPubMed
16Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Smalley, R.E., Schmidt, J., Talmon, Y.: Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3, 1379 2003CrossRefGoogle Scholar
17Barazzouk, S., Hotchandani, S., Vinodgopal, K., Kamat, P.V.: Single wall carbon nanotube films for photocurrent generation. A prompt response to visible light irradiation. J. Phys. Chem. B 108, 17015 2004CrossRefGoogle Scholar
18Rakitin, A., Papadopoulos, C., Xu, J.M.: Electronic properties of amorphous carbon nanotubes. Phys. Rev. B 61(8), 5793 2000CrossRefGoogle Scholar
19Bachilo, S.M., Strano, M.S., Kittrell, C., Houge, R.H., Smalley, R.E., Weisman, R.B.: Structure assigned optical spectra of single walled carbon nanotubes. Science 298, 2361 2002CrossRefGoogle ScholarPubMed
20Ichida, M., Mizuno, S., Satio, Y., Kataura, H., Achiba, Y., Nakamura, A.: Coulomb effects on the fundamental optical transition in semiconducting single walled carbon nanotubes: Divergent behavior in the small diameter limit. Phys. Rev. B 65, 241407 2002CrossRefGoogle Scholar
21Dukovic, G., Wang, F., Song, D., Sfeir, M.Y., Heinz, T.F., Brus, L.E.: Structural dependence of excitonic optical transitions and band gap energies in carbon nanotubes. Nano Lett. 5(11), 2314 2005CrossRefGoogle ScholarPubMed
22Wang, F., Sfeir, M.Y., Huang, L., Huang, X.M. Henry, Wu, Y., Kim, J., Hone, J., O’Brien, S., Brus, L.E., Heinz, T.F.: Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy. Phys. Rev. Lett. 96, 167401 2006CrossRefGoogle ScholarPubMed