Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T12:05:02.089Z Has data issue: false hasContentIssue false

One-step CVD synthesis of a boron nitride nanotube–iron composite

Published online by Cambridge University Press:  11 May 2011

Rajen B. Patel*
Affiliation:
Department of Physics and Materials Science and Engineering Program, New Jersey Institute of Technology, Newark, New Jersey 07102
Jinwen Liu
Affiliation:
Department of Physics and Materials Science and Engineering Program, New Jersey Institute of Technology, Newark, New Jersey 07102
Jennifer Eng
Affiliation:
Department of Biology, Tufts University, Medford, Massachusetts 02155
Zafar Iqbal
Affiliation:
Department of Physics and Materials Science and Engineering Program; and Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A composite of boron nitride nanotubes (BNNTs) and iron (Fe) has been synthesized using a novel one-step process and characterized by optical, electron microscope, and mechanical measurement techniques. The BNNT–Fe composite, the first of this type produced to the best of our knowledge, is shown to have up to 24% higher specific yield strengths from stress–strain measurements and Rockwell Hardness C Scale (HRC), depth of penetration into sample of 120° diamond cone, 50% higher relative to a control sample of pure Fe. Scanning and transmission electron microscope imaging shows that the composite is comprised of a uniform nanoscale mixture of BNNTs bridging the metal particles.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Curtin, W.A. and Sheldon, B.W.: CNT-reinforced ceramics and metals. Mater. Today 7, 44 (2004).CrossRefGoogle Scholar
2.Iqbal, Z. and Goyal, A.: Carbon nanotubes/nanofibers and carbon fibers, in Functional Fillers for Plastics, edited by Xanthos, M. (WILEY-VCH Verlag, Berlin, Germany, 2005), p. 175.CrossRefGoogle Scholar
3.Van Lier, G., Van Alsenoy, C., Van Doren, V., and Geerlings, P.: Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem. Phys. Lett. 326, 181 (2000).CrossRefGoogle Scholar
4.Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A., and Ordejon, P.: Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59, 12678 (1999).CrossRefGoogle Scholar
5.Hernandez, E., Goze, C., Bernier, P., and Rubio, A.: Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80, 4502 (1998).CrossRefGoogle Scholar
6.Lu, J.P.: Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79, 1297 (1997).Google Scholar
7.Yakobson, B.I., Campbell, M.P., Brabec, C.J., and Bernohlc, J.: High strain rate fracture and C-chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8, 341 (1997).Google Scholar
8.Treacy, M.M.J., Ebbesen, T.W., and Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (2002).CrossRefGoogle Scholar
9.Wong, E.W., Sheehan, P.E., and Lieber, C.M.: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 (1997).Google Scholar
10.Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forró, L., Benoit, W., and Zuppiroli, L.: Mechanical properties of carbon nanotubes. Appl. Phys. A Mater. Sci. Process. 69, 255 (1999).Google Scholar
11.Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., and Treacy, M.M.J.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013 (1998).CrossRefGoogle Scholar
12.Goyal, A., Weigand, D.A., Owens, F.J., and Iqbal, Z.: Enhanced yield strength in iron nanocomposite with in situ grown single-wall carbon nanotubes. J. Mater. Res. 21, 522 (2006).Google Scholar
13.Goyal, A., Wiegand, D., Owens, F.J., and Iqbal, Z.: Synthesis of carbide-free, high strength iron–carbon nanotube composite by in situ nanotube growth. Chem. Phys. Lett. 442(17), 365 (2007).CrossRefGoogle Scholar
14.Chopra, N.G., and Zettl, A.: Measurement of the elastic modulus of a multi-wall boron nitride nanotubes. Solid State Commun. 105(5), 297 (1998).CrossRefGoogle Scholar
15.Lee, J.H.: A study on a boron-nitride nanotube as a gigahertz oscillator. J. Korean Phys. Soc. 49(1), 172176 (2006).Google Scholar
16.Lourie, O.R., Jones, C.R., Bartlett, B.M., Gibbons, P.C., Ruoff, R.S., and Buhro, W.E.: CVD growth of boron nitride nanotubes. Chem. Mater. 12, 1808 (2000).CrossRefGoogle Scholar
17.Ma, R., Bando, Y., and Sato, T.: CVD synthesis of boron nitride nanotubes without metal catalysts. Chem. Phys. Lett. 337, 61 (2001).Google Scholar
18.Golberg, D., Bando, Y., Kurashima, K., and Sato, T.: Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scr. Mater. 44, 1561 (2001).CrossRefGoogle Scholar
19.Chen, X., Wu, P., Rousseas, M., Okawa, D., Gartner, Z., Zettl, A., and Bertozzi, C.R.: Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 131, 890 (2009).Google Scholar
20.Lam, C.W., McCluskey, J., and Hunter, R.L.: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77, 126 (2004).CrossRefGoogle ScholarPubMed
21.Fu, J.J., Lu, Y.N., Xu, H., Huo, K.F., Wang, X.Z., Li, L., Hu, Z., and Chen, Y.: The synthesis of boron nitride nanotubes by an extended vapour–liquid–solid method. Nanotechnology 15, 727 (2004).Google Scholar
22.Hu, Z., Fan, Y., Chen, F., and Chen, Y.: Amorphous iron–boron powders prepared by chemical reduction of mixed-metal cation solutions: Dependence of composition upon reaction temperature. J. Chem. Soc., Chem. Commun. 2, 247 (1995).CrossRefGoogle Scholar
23.Hu, Z., Fan, Y., and Chen, Y.: Preparation and characterization of ultrafine amorphous alloy particles. Appl. Phys. A Mater. Sci. Process. 68, 225 (1999).CrossRefGoogle Scholar
24.Jiang, J., D’ezsi, I., Gonser, U., and Lin, X.: A study of the preparation conditions of Fe-B powders produced by chemical reduction. J. Non Cryst. Solids 124, 139 (1991).CrossRefGoogle Scholar
25.Arenal, R., Ferrari, A.C., Reich, S., Wirtz, L., Mevellec, J.Y., Lefrant, S., Rubio, A., and Loiseau, A.: Raman spectroscopy of single-wall boron nitride nanotubes. Nano Lett. 6(8), 1812 (2006).CrossRefGoogle ScholarPubMed
26.Gan, Z.W., Ding, X.X., Huang, Z.X., Huang, X.T., Cheng, C., Tang, C., and Qi, S.R.: Growth of boron nitride nanotube film in situ. Appl. Phys. A Mater. Sci. Process. 81, 527 (2005).CrossRefGoogle Scholar
27.Choi, S.R., Bansal, N.P., and Garg, A.: Mechanical and microstructural characterization of boron nitride nanotubes-reinforced SOFC seal glass composite. Mater. Sci. Eng. A 460/461, 509 (2007).CrossRefGoogle Scholar
28.Sen, S., Schofield, E., O’Dell, J.S., Deka, L., and Pillay, S.: The development of a multifunctional composite material for use in human space exploration beyond low-earth orbit. JOM 61(1), 23 (2009).CrossRefGoogle Scholar
29.Smith, M.W.: Jordan, K.C., Park, C., Kim, J.W., Lillehei, P.T., Crooks, R., and Harrison, J.S.: Very long single- and few-walled boron, nitride nanotubes via the pressurized vapor/condenser method. Nanotechnology 20, 505604 (2009).CrossRefGoogle ScholarPubMed
30.Zhong, W., Overney, G., and Tomanek, D.: Structural properties of Fe crystals. Phys. Rev. B 47(1), 95 (1993).CrossRefGoogle ScholarPubMed