Article contents
On the usage of the effectively shaped indenter concept for analysis of yield strength
Published online by Cambridge University Press: 31 January 2011
Abstract
Using the extended Hertzian approach (EHA), the “effectively shaped indenter” corresponding to Pharr's concept is described in terms of a parameter set {d0,d2,d4,d6}, which can be determined by a fitting procedure from the unloading curve of an indentation experiment. Owing to the limited accuracy of measurement, a given experimental curve may in principle correspond to more than one such parameter set. Based on indentation experiments with a Berkovich indenter into fused silica, we have investigated the influence of the fitting procedure itself on the results. We suggest a certain manual fitting procedure, which delivered a yield strength Y = (7.1 ± 0.1) GPa independent of the maximum load. Manual fitting always includes some degree of subjectivity, however, both Y and the elastic field as a whole proved to be relatively robust against modifications of the parameter set. We also suggest a preliminary objective procedure, which delivered Y = 6.8 − 7.1 GPa. In addition, we have performed finite element method (FEM) simulations of elastic–plastic indentations of a conical indenter into a von Mises solid with a yield strength of Y = 7.0 GPa. The simulated unloading curve was analyzed using the EHA in the same manner as the experimental curves, and yield strength of 6.95 GPa was obtained being very close to the input value of the FEM.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2009
References
REFERENCES
- 6
- Cited by