Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T01:31:22.467Z Has data issue: false hasContentIssue false

On the fluctuation field in multidomain barium hexaferrite particles

Published online by Cambridge University Press:  31 January 2011

J. M. González
Affiliation:
Departamen to de Propiedades Ópticas, Magnéticas y de Transporte, Instituto de Ciencia de Materiales-CSIC. c/Serrano 144, 28006 Madrid, Spain
Anit K. Giri
Affiliation:
Departamen to de Propiedades Ópticas, Magnéticas y de Transporte, Instituto de Ciencia de Materiales-CSIC. c/Serrano 144, 28006 Madrid, Spain
C. de Julián
Affiliation:
Departamen to de Propiedades Ópticas, Magnéticas y de Transporte, Instituto de Ciencia de Materiales-CSIC. c/Serrano 144, 28006 Madrid, Spain
M. Vélez
Affiliation:
Departamento de Física de Materiales, Facultad de Ciencias F’sicas, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
J. L. Vicent
Affiliation:
Departamento de Física de Materiales, Facultad de Ciencias F’sicas, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
Get access

Abstract

A complete study of the thermally activated demagnetization phenomenology taking place in multidomain barium hexaferrite sample is presented. From the irreversible magnetization dependence of the fluctuation field, it is concluded that a demagnetization mechanism independent of the magnetization value rules the reversal in samples having large enough particles. Differently from this, in a sample having a broad particle diameter distribution (and including a minority percentage of small, single domain particles), our results clearly indicate the occurrence of two different demagnetization processes. Also, it was observed that the activation volume, in all the samples, was of the same order of magnitude and clearly smaller than the particle volume.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.González, J. M., Giri, A. K., de Julián, C., Reyes, M., and Vicent, J. L., Europhys. Lett. 28, 143 (1994).CrossRefGoogle Scholar
2.Kronmüller, H., in Science and Technology of Nanostructured Magnetic Materials, edited by Hadjipanayis, G. C. and Prinz, G. A. (Plenum Press, New York, 1991), p. 657; G. Martinek, H. Kronmüller, and H. Hirosawa, J. Magn. Magn. Mater. 89, 369 (1990).CrossRefGoogle Scholar
3.Taylor, D. W., Villas-Boas, V., Lu, Q., Rossignol, M. F., Missell, F. P., Givord, D., and Hirosawa, S., J. Magn. Magn. Mater. 130, 225 (1990); D. Givord, P. Tenaud, and T. Viadieu, IEEE Trans. Magn. MAG-24, 1931 (1988).CrossRefGoogle Scholar
4.Kojima, H., in Ferromagnetic Materials, edited by Wohlfarth, E. P. (North-Holland, Amsterdam, 1982), Vol. 3, p. 338.Google Scholar
5.Street, R., McCormic, P. G., and Folks, L., J. Magn. Magn. Mater. 104–107, 368 (1992).CrossRefGoogle Scholar
6.Folks, L. and Street, R., J. Appl. Phys. 76, 6391 (1994).CrossRefGoogle Scholar