Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T12:17:26.177Z Has data issue: false hasContentIssue false

On the determination of Young’s modulus of thin films with impulse excitation technique

Published online by Cambridge University Press:  07 December 2016

M.F. Slim*
Affiliation:
ICD-LASMIS, Université de Technologie de Troyes, UMR 6281, CNRS, Antenne de Nogent, Pôle Technologique de Haute-Champagne, Nogent 52800, France; and Nogent International Center for CVD Innovation, LRC CEA-ICD-LASMIS, UTT, Antenne de Nogent-52, Pôle Technologique de Haute-Champagne, Nogent 52800, France
A. Alhussein*
Affiliation:
ICD-LASMIS, Université de Technologie de Troyes, UMR 6281, CNRS, Antenne de Nogent, Pôle Technologique de Haute-Champagne, Nogent 52800, France; and Nogent International Center for CVD Innovation, LRC CEA-ICD-LASMIS, UTT, Antenne de Nogent-52, Pôle Technologique de Haute-Champagne, Nogent 52800, France
A. Billard
Affiliation:
IRTES-LERMPS, UTBM, site de Montbéliard, Belfort cedex 90010, France; and LRC CEA-IRTES-LERMPS, UTBM, site de Montbéliard, Belfort cedex 90010, France
F. Sanchette
Affiliation:
ICD-LASMIS, Université de Technologie de Troyes, UMR 6281, CNRS, Antenne de Nogent, Pôle Technologique de Haute-Champagne, Nogent 52800, France; and Nogent International Center for CVD Innovation, LRC CEA-ICD-LASMIS, UTT, Antenne de Nogent-52, Pôle Technologique de Haute-Champagne, Nogent 52800, France
M. François
Affiliation:
ICD-LASMIS, Université de Technologie de Troyes, UMR 6281, CNRS, Antenne de Nogent, Pôle Technologique de Haute-Champagne, Nogent 52800, France
*
a)Address all correspondence to these authors. e-mail: [email protected], [email protected]
Get access

Abstract

The purpose of this paper is to propose a critical assessment of Young’s modulus determination of coated materials using Impulse Excitation Technique (IET). In this technique, the coated substrate is excited by an impulse and the acoustic vibrations are recorded. The frequency of the first bending mode is then used in a mechanical model to obtain the Young’s modulus of the coating. The existing models are based on two different theories: the flexural rigidity of a composite beam and the Classical Laminated Beam Theory (CLBT). The aim of the present paper is to assess the accuracy (trueness and precision) of the technique. For this, different models proposed in the literature are compared with a finite element model of the specimen for various conditions. The trueness and precision of models were evaluated and the best model was identified. Then a detailed uncertainty budget is performed to identify and quantify the most influent factors on the global uncertainty.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Erik G. Herbert

References

REFERENCES

Lopes, C., Vieira, M., Borges, J., Fernandes, J., Rodrigues, M.S., Alves, E., Barradas, N.P., Apreutesei, M., Steyer, P., Tavares, C.J., Cunha, L., and Vaz, F.: Multifunctional Ti–Me (Me = Al, Cu) thin film systems for biomedical sensing devices. Vacuum 122, 353359 (2015).CrossRefGoogle Scholar
Makhlouf, A.S.H.: Protective coatings for automotive, aerospace and military applications: Current prospects and future trends. In Handbook of Smart Coatings for Materials Protection, Makhlouf, A.S.H., ed. (Woodhead Publishing, Cambridge, 2014); pp. 121131.CrossRefGoogle Scholar
Tait, J.G., Worfolk, B.J., Maloney, S.A., Hauger, T.C., Elias, A.L., Buriak, J.M., and Harris, K.D.: Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells. Sol. Energy Mater. Sol. Cells 110, 98106 (2013).CrossRefGoogle Scholar
Billard, A. and Perry, F.: Pulvérisation cathodique magnétron. Techniques de l’Ingénieur, M1654 (2005).Google Scholar
Thornton, J.A.: Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 11, 666670 (1974).CrossRefGoogle Scholar
Bellan, C. and Dhers, J.: Evaluation of Young modulus of CVD coatings by different techniques. Thin Solid Films 469–470, 214220 (2004).CrossRefGoogle Scholar
Radovic, M., Lara-Curzio, E., and Riester, L.: Comparison of different experimental techniques for determination of elastic properties of solids. Mater. Sci. Eng., A 368, 5670 (2004).CrossRefGoogle Scholar
Tan, Y., Shyam, A., Choi, W.B., Lara-Curzio, E., and Sampath, S.: Anisotropic elastic properties of thermal spray coatings determined via resonant ultrasound spectroscopy. Acta Mater. 58, 53055315 (2010).CrossRefGoogle Scholar
Sedmák, P., Seiner, H., Sedlák, P., Landa, M., Mušálek, R., and Matějíček, J.: Application of resonant ultrasound spectroscopy to determine elastic constants of plasma-sprayed coatings with high internal friction. Surf. Coat. Technol. 232, 747757 (2013).CrossRefGoogle Scholar
Thomasová, M., Sedlák, P., Seiner, H., Janovská, M., Kabla, M., Shilo, D., and Landa, M.: Young’s moduli of sputter-deposited NiTi films determined by resonant ultrasound spectroscopy: Austenite, R-phase, and martensite. Scr. Mater. 101, 2427 (2015).CrossRefGoogle Scholar
Gadaud, P. and Pautrot, S.: Application of the dynamical flexural resonance technique to industrial materials characterisation. Mater. Sci. Eng., A 370, 422426 (2004).CrossRefGoogle Scholar
López-Puerto, A. and Oliva, A.I.: A vibrational approach to determine the elastic modulus of individual thin films in multilayers. Thin Solid Films 565, 228236 (2014).CrossRefGoogle Scholar
Gadaud, P., Milhet, X., and Pautrot, S.: Bulk and coated materials shear modulus determination by means of torsional resonant method. Mater. Sci. Eng., A 521–522, 303306 (2009).CrossRefGoogle Scholar
Mazot, P. and Pautrot, S.: Détermination du module d’young de dépôts par flexion dynamique: Application aux systèmes bicouche et tricouche. Ann. Chim. Sci. Mat. 23, 821827 (1998).CrossRefGoogle Scholar
Pickett, G.: Equations for computing elastic constants from flexural and torsional resonant frequencies of vibration of prisms and cylinders. Am. Soc. Test. Mater., Proc. 45, 846865 (1945).Google Scholar
Tefft, W.E.: Numerical solution of the frequency equations for the flexural vibration of cylindrical rods. J. Res. Natl. Bur. Stand., Sect. B 64B, 237242 (1960).CrossRefGoogle Scholar
Spinner, S., Reichard, T.W., and Tefft, W.E.: A comparison of experimental and theoretical relations between Young’s modulus and the flexural and longitudinal resonance frequencies of uniform bars. J. Res. Natl. Bur. Stand., Sect. A 64A, 147155 (1960).CrossRefGoogle ScholarPubMed
Spinner, S. and Valore, R.C.: Comparison of theoretical and empirical relations between the shear modulus and torsional resonance frequencies for bars of rectangular cross section. J. Res. Natl. Bur. Stand. 60, 459464 (1958).CrossRefGoogle Scholar
Tefft, W.E. and Spinner, S.: Torsional resonance vibrations of uniform bars of square cross section. J. Res. Natl. Bur. Stand., Sect. A 65A, 167171 (1961).CrossRefGoogle ScholarPubMed
ASTM E1876–15: Standard test method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio by impulse excitation of vibration (2015).Google Scholar
Atri, R.R., Ravichandran, K.S., and Jha, S.K.: Elastic properties of in-situ processed Ti–TiB composites measured by impulse excitation of vibration. Mater. Sci. Eng., A 271, 150159 (1999).CrossRefGoogle Scholar
Berry, B.S. and Pritchet, W.C.: Vibrating reed internal friction apparatus for films and foils. IBM J. Res. Dev. 19, 334343 (1975).CrossRefGoogle Scholar
Peraud, S., Pautrot, S., Villechaise, P., Mazot, P., and Mendez, J.: Determination of Young’s modulus by a resonant technique applied to two dynamically ion mixed thin films. Thin Solid Films 292, 5560 (1997).CrossRefGoogle Scholar
Etienne, S., Ayadi, Z., Nivoit, M., and Montagnon, J.: Elastic modulus determination of a thin layer. Mater. Sci. Eng., A 370, 181185 (2004).CrossRefGoogle Scholar
Rao, S.S.: Vibration of Continuous Systems (John Wiley & Sons, Inc., Hoboken, 2006).CrossRefGoogle Scholar
Pagnotta, L. and Stigliano, G.: Elastic characterization of isotropic plates of any shape via dynamic tests: Practical aspects and experimental applications. Mech. Res. Commun. 36, 54161 (2009).CrossRefGoogle Scholar
Gere, J.: Mechanics of Materials (Cengage Learning, Independence, 2003).Google Scholar
François, D.: Essais mécaniques et lois de comportement (Éditions Lavoisier, Cachan, 2001).Google Scholar
Lord, J.D. and Morrell, R.: Measurement Good Practice Guide No. 98, Elastic Modulus Measurement (National Physical Laboratory, Middlesex, UK, 2007).Google Scholar
Abaqus Analysis User’s Manual (6.12).Google Scholar
JCGM 200:2012: International vocabulary of metrology—Basic and general concepts and associated terms (VIM) (2012).Google Scholar
JCGM 100:2008(E): Evaluation of measurement data—Guide to the expression of uncertainty in measurement (2008).Google Scholar
Bullough, C.K.: The determination of uncertainties in Dynamic Young’s Modulus. Standards Measurment & Testing Project No. SMT4-CT97-2165 (2000).Google Scholar