Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T05:40:02.909Z Has data issue: false hasContentIssue false

On the bcc, fcc, hcp, and amorphous polymorphs of Zr3Al

Published online by Cambridge University Press:  31 January 2011

A.R. Yavari
Affiliation:
LTPCM-CNRS UA29, Institut National Polytechnique de Grenoble, BP 75, Domaine Universitaire, 38402 St. Martin d'Hères, France
S. Gialanella
Affiliation:
Dpto di Ingegneria dei Materiali, Universita di Trento, Mesiano 38050, Italy
T. Benameur
Affiliation:
LTPCM-CNRS UA29, Institut National Polytechnique de Grenoble, BP 75, Domaine Universitaire, 38402 St. Martin d'Hères, France
R.W. Cahn
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, United Kingdom
B. Bochu
Affiliation:
CMTC, Institut National Polytechnique de Grenoble, BP 75, Domaine Universitaire, 38402 St. Martin d'Hères, France
Get access

Abstract

Rapid solidification of the Zr3Al liquid alloy allows retention of the high temperature β–Zr solid solution with bcc structure. Mechanical grinding is shown to amorphize this metastable phase very easily. Calculations show that the retained bcc phase has a free energy above that of the amorphous phase. The density of bcc Zr3Al at room temperature is found to be 2% lower than that of its equilibrium L12-ordered fcc structure as determined from their respective lattice parameters. The bcc phase thus represents a 2% volume expansion with respect to the fcc structure.

Type
Communications
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schulson, E.M., J. Nucl. Mater. 83, 239 (1979)).CrossRefGoogle Scholar
2Okamoto, P. R.Rehn, L. E.Pearson, J.Bhadra, R. and Grimsditch, M.J. Less-Comm. Met. 140, 231 (1988)).CrossRefGoogle Scholar
3Lee, J. Y.Choi, W. C. and Kim, Y. G.Acta Metall. Mater. 39, 3451 (1991)).Google Scholar
4Gialanella, S.Yavari, A. R. and Cahn, R. W.Scripta Metall. Mater. 26, 1233 (1992)).CrossRefGoogle Scholar
5Luzzi, D. E.Mori, H.Fujita, H. and Meshii, M.Scripta Metall. 18, 957 (1984)).CrossRefGoogle Scholar
6Mori, H.Fujita, H.Tendo, M. and Fujita, M.Scripta Metall. 18, 783 (1984)).CrossRefGoogle Scholar
7Mori, H. and Fujita, H.Proc. Int. Symp. on In Situ Experiments with HVEM (Osaka University, 1985), pp. 465471.Google Scholar
8Wolf, D.Okamoto, P. R.Yip, S. J.Lutsko, F. and Kluge, M.J. Mater. Res. 5, 286 (1990)).Google Scholar
9Fecht, H. J.Han, G.Fuand, Z. and Johnson, W. C.J. Appl. Phys. 67, 1744 (1990)).CrossRefGoogle Scholar
10Ma, E. and Atzmon, M.Phys. Rev. Lett. 67, 1126 (1991)).Google Scholar
11Ma, E. and Atzmon, M. TMS fall meeting, Cincinnati, 1991, to appear in J. Alloys and Compounds.Google Scholar
12Yavari, A. R. and Bochu, B.Philos. Mag. A 59, 697 (1989)).CrossRefGoogle Scholar
13Yavari, A. R.Crespo, P.Pulido, E.Hernando, A.Fillion, G.Lethuillier, P.Baro, M. D. and Surinach, S. in Ordering and Disordering in Alloys, edited by Yavari, A. R. (Elsevier Applied Science, Amsterdam, 1992), pp. 1222.CrossRefGoogle Scholar
14BenAmeur, T. and A.Yavari, R.J. Mater. Res. 7, 2971 (1992)).CrossRefGoogle Scholar
15Moffat, W. G.Handbook of Binary Phase Diagrams (General Electric Co., Schenectady, NY, 1978).Google Scholar
16Saunders, N.Calculate coable and Metastable Phase Equilibrium in AlLiZr Alloys” (University of Surrey, Materials Science and Engineering, internal report INT-MSE-016, 1988).Google Scholar
17Ma, E. and Atzmon, M. TMS fall meeting, Cincinnati, 1991, to appear in J. Alloys and Compounds.Google Scholar