Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-04T02:19:21.505Z Has data issue: false hasContentIssue false

On Raman scattering from selected M2AC compounds

Published online by Cambridge University Press:  31 January 2011

Oren D. Leaffer
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Surojit Gupta
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Michel W. Barsoum
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Jonathan E. Spanier*
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report on the one-phonon Raman scattering spectra from the following M2AC MAX-phase ternary carbides: Ti2AlC, V2AlC, Cr2AlC, Nb2AlC, Ta2AlC, Ti2InC, Hf2InC, V2GeC, Cr2GeC, V2AsC, and Nb2AsC. We also report the results of calculations of the Γ-point, Raman-active phonon energies for these phases based on density functional theoretical simulations, including the effect of the k-point sampling on the convergence of phonon energies. Good agreement between all measured and calculated Γ-point Raman-active optical phonon energies is obtained.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Barsoum, M.W., Murugaiah, A., Kalidindi, S.R.Zhen, T.: Kinking nonlinear elastic solids, nanoindentations and geology. Phys. Rev. Lett. 92, 255508 2004CrossRefGoogle ScholarPubMed
2Barsoum, M.W., Zhen, T., Kalidindi, S.R., Radovic, M.Murugahiah, A.: Fully reversible, dislocation-based Ti3SiC2 to 1 GPa. Nat. Mater. 2, 107 2003CrossRefGoogle ScholarPubMed
3Guyer, R.A.Johnson, P.A.: Nonlinear mesoscopic elasticity: Evidence for a new class of solids. Physics Today 52, 30 1999CrossRefGoogle Scholar
4Guyer, R.A., McCall, K.R.Boitnott, G.N.: Hysteresis, discrete memory and nonlinear wave propagation in rock: A new paradigm. Phys. Rev. Lett. 74, 3491 1995CrossRefGoogle Scholar
5Barsoum, M.W.: The Mn +1AXn phases: A new class of solids; Thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201 2000CrossRefGoogle Scholar
6Barsoum, M.W.El-Raghy, T.: The MAX phases: Unique new carbide and nitride materials. Am. Sci. 89, 336 2000Google Scholar
7Spanier, J.E., Gupta, S., Amer, M.Barsoum, M.W.: Vibrational behavior of the Mn + 1AXn phases from first-order Raman scattering (M = Ti,V,Cr, A = Si, X = C, N). Phys. Rev. B 71, 012103 2005CrossRefGoogle Scholar
8Gupta, S.Barsoum, M.W.: (unpublished)Google Scholar
9Lofland, S.E., Hettinger, J.D., Harrell, K., Finkel, P., Gupta, S., Barsoum, M.W.Hug, G.: Elastic and electronic properties of select M 2AX phases. Appl. Phys. Lett. 84, 508 2004CrossRefGoogle Scholar
10Barsoum, M.W., Salama, I., El-Raghy, T., Golczewski, J., Porter, W.D., Wang, H., Siefert, H.Aldinger, F.: Thermal and electrical properties of Nb2AlC, (Ti, Nb)2AlC and Ti2AlC. Metall. Mater. Trans. A 33a, 2779 2002Google Scholar
11Gupta, S.Barsoum, M.W.: Synthesis and oxidation of V2AlC and (Ti0.5,V0.5)2AlC in air. J. Electrochem. Soc. 151, D24 2004CrossRefGoogle Scholar
12Salama, I., El-Raghy, T.Barsoum, M.W.: Synthesis and mechanical properties of Nb2AlC and (Ti,Nb)2AlC. J. Alloys Compd. 347, 271 2002CrossRefGoogle Scholar
13Hettinger, J.D., Lofland, S.E., Finkel, P., Meehan, T., Palma, J., Harrell, K., Gupta, S., Ganguly, A., El-Raghy, T.Barsoum, M.W.: Electrical transport, thermal transport, and elastic properties of M 2AlC (M = Ti, Cr, Nb, and V). Phys. Rev. B 72, 115120 2005CrossRefGoogle Scholar
14Manoun, B., Gulve, R.P., Saxena, S.K., Gupta, S., Barsoum, M.W.Zha, C.S.: Compression behavior of M 2AlC (M = Ti, V, Cr, Nb, and Ta) phases to above 50 GPa. Phys. Rev. B 73, 024110 2006CrossRefGoogle Scholar
15Barsoum, M.W., Golczewski, J., Siefert, H.J.Aldinger, F.: Fabrication and electrical and thermal properties of Ti3InC, Hf2InC and (Ti,Hf)2InC. J. Alloys Compd. 340, 173 2002CrossRefGoogle Scholar
16Kresse, G.Furthmuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 1996CrossRefGoogle ScholarPubMed
17Parlinski, K., Li, Z.Q.Kawazoe, Y.: First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 78, 4063 1997CrossRefGoogle Scholar
18Materials Design MedeA software, Version 2.2.1. Materials Design, Angel Fire, NM, 2006Google Scholar
19Kresse, G.Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 1999CrossRefGoogle Scholar
20Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 1994CrossRefGoogle ScholarPubMed
21Perdew, J.P., Burke, K.Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 1996CrossRefGoogle ScholarPubMed
22Schuster, J.C., Nowotny, H.Vaccaro, C.: The ternary systems: CrAlC, VAlC, and TiAlC and the behavior of H-phases (M2AlC). J. Solid State Chem. 32, 213 1980CrossRefGoogle Scholar